Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 124(Pt B): 110974, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37757633

ABSTRACT

CAR-T targeting CD19 have achieved significant effects in the treatment of B-line leukemia and lymphoma. However, the treated patients frequently relapsed and could not achieve complete remission. Therefore, improving the proliferation and cytotoxicity of CAR-T cells, reducing exhaustion and enhancing infiltration capacity are still issues to be solved. The IL-7 has been shown to enhance the memory characteristics of CAR-T cells, but the specific mechanism has yet to be elaborated. miRNAs play an important role in T cell activity. However, whether miRNA is involved in the activation of CAR-T cells by IL-7 has not yet been reported. Our previous study had established the 3rd generation CAR-T cells. The present study further found that IL-7 significantly increased the proliferation of anti-CD19 CAR-T cells, the ratio of CD4 + CAR + cells and the S phase of cell cycle. In vivo study NAMALWA xenograft model showed that IL-7-stimulated CAR-T cells possessed stronger tumoricidal efficiency. Further we validated that IL-7 induced CAR-T cells had low expression of CDKN1A and high expression of miRNA-98-5p. Additionally, CDKN1A was associated with miRNA-98-5p. Our results, for the first time, suggested IL-7 could conspicuously enhance the proliferation of CAR-T cells through miRNA-98-5p targeting CDKN1A expression, which should be applied to CAR-T production.


Subject(s)
MicroRNAs , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Interleukin-7/genetics , Interleukin-7/metabolism , MicroRNAs/genetics , Cell Proliferation , Antigens, CD19/genetics , Antigens, CD19/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism
2.
Phytother Res ; 36(12): 4587-4603, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35916377

ABSTRACT

Andrographolide(ADE) has been demonstrated to inhibit tumor growth through direct cytotoxicity on tumor cells. However, its potential activity on tumor microenvironment (TME) remains unclear. Tumor-associated macrophages (TAMs), composed mainly of M2 macrophages, are the key cells that create an immunosuppressive TME by secretion of cytokines, thus enhancing tumor progression. Re-polarized subpopulations of macrophages may represent vital new therapeutic alternatives. Our previous studies showed that ADE possessed anti-metastasis and anoikis-sensitization effects. Here, we demonstrated that ADE significantly suppressed M2-like polarization and enhanced M1-like polarization of macrophages. Moreover, ADE inhibited the migration of M2 and tube formation in HUVECs under M2 stimulation. In vivo studies showed that ADE restrained the growth of MDA-MB-231 and HCC1806 human breast tumor xenografts and 4T-1 mammary gland tumors through TAMs. Wnt5a/ß-catenin pathway and MMPs were particularly associated with ADE's regulatory mechanisms to M2 according to RNA-seq and bioinformatics analysis. Moreover, western blot also verified the expressions of these proteins were declined with ADE exposure. Among the cytokines released by M2, PDGF-AA and CCL2 were reduced. Our current findings for the first time elucidated that ADE could modulate macrophage polarization and function through Wnt5a signaling pathway, thereby playing its role in inhibition of triple-negative breast cancer.


Subject(s)
Breast Neoplasms , Diterpenes , Wnt Signaling Pathway , Female , Humans , beta Catenin , Breast Neoplasms/drug therapy , Tumor Microenvironment , Tumor-Associated Macrophages , Diterpenes/pharmacology , Human Umbilical Vein Endothelial Cells , MDA-MB-231 Cells , Animals
3.
Rejuvenation Res ; 24(4): 283-293, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33607932

ABSTRACT

Umbilical cord mesenchymal stem cells (UCMSCs) have been identified as a potentially ideal cell type for use in regenerative therapeutic contexts owing to their excellent paracrine secretory abilities and other desirable properties. Previous work has shown that stem cell-derived exosomes can effectively reduce skin aging, but few studies have specifically focused on the role of UCMSC-derived exosomes in this context. In this study, we isolated exosomes derived from UCMSCs grown in a three-dimensional culture system and explored their ability to modulate the photo-aging of HaCaT keratinocytes. Cell viability and proliferation were assessed using CCK8 assay, whereas wound healing and transwell assays were used to assess cell migratory capabilities. UVB irradiation (60 mJ/cm2) was used to induce photo-aging of HaCaT cells. TUNEL and SA-ß-Gal staining were used to explore HaCaT cell apoptosis and senescence, respectively, whereas real-time quantitative PCR was used to assess the expression of relevant genes at the mRNA level. We found that UCMSC-derived exosomes were able to enhance normal HaCaT cell proliferation and migration while also inhibiting UVB-induced damage to these cells. These exosomes also reduced HaCaT cell apoptosis and senescence, increasing collagen type I expression and reducing matrix metalloproteinase (MMP1) expression in photo-aged HaCaT cells. Together, these findings indicate that UCMSC-derived exosomes have the potential to be used therapeutically to suppress skin aging.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Skin Aging , Umbilical Cord , Aged , Cell Proliferation , HaCaT Cells , Humans , Umbilical Cord/cytology
4.
J Cell Mol Med ; 25(2): 686-700, 2021 01.
Article in English | MEDLINE | ID: mdl-33225580

ABSTRACT

Adoptive immunotherapy is a new potential method of tumour therapy, among which anti-CD19 chimeric antigen receptor T-cell therapy (CAR-T cell), is a typical treatment agent for haematological malignancies. Previous clinical trials showed that the quality and phenotype of CAR-T cells expanded ex vivo would seriously affect the tumour treatment efficacy. Although magnetic beads are currently widely used to expand CAR-T cells, the optimal expansion steps and methods have not been completely established. In this study, the differences between CAR-T cells expanded with anti-CD3/CD28 mAb-coated beads and those expanded with cell-based aAPCs expressing CD19/CD64/CD86/CD137L/mIL-15 counter-receptors were compared. The results showed that the number of CD19-specific CAR-T cells with a 4-1BB and CD28 co-stimulatory domain was much greater with stimulation by aAPCs than that with beads. In addition, the expression of memory marker CD45RO was higher, whereas expression of exhausted molecules was lower in CAR-T cells expanded with aAPCs comparing with the beads. Both CAR-T cells showed significant targeted tumoricidal effects. The CAR-T cells stimulated with aAPCs secreted apoptosis-related cytokines. Moreover, they also possessed marked anti-tumour effect on NAMALWA xenograft mouse model. The present findings provided evidence on the safety and advantage of two expansion methods for CAR-T cells genetically modified by piggyBac transposon system.


Subject(s)
Antigens, CD19/metabolism , Receptors, Antigen, T-Cell/metabolism , Animals , Blotting, Western , CD8 Antigens/metabolism , Cell Line, Tumor , Electroporation , Flow Cytometry , Humans , Immunotherapy, Adoptive/methods , K562 Cells , Male , Mice , Mice, SCID , Plasmids/genetics , Xenograft Model Antitumor Assays
5.
J Cancer Res Clin Oncol ; 145(5): 1133-1146, 2019 May.
Article in English | MEDLINE | ID: mdl-30805774

ABSTRACT

PURPOSE: Human mesenchymal stem cells (hMSCs) have been applied in a variety of therapies recently. However, the role of MSCs in tumor progression remains largely elusive. Some studies demonstrated that MSCs can promote tumor growth, while others had opposite results. Therefore, the lack of evidence about the effect of MSCs on tumor cells impedes its further use. METHODS: In the current study, hMSCs from amniotic membrane (hAMSCs) and umbilical cord (hUCMSCs) were used to evaluate the effects of MSCs on tumor development in vitro and in vivo. Two different animal models based on subcutaneous xenograft bearing nude mice and a murine experimental metastatic model were established for in vivo study. Moreover, cytokines regulated by MSCs co-cultured with cancer cells SPC-A-1 were also analyzed by cytokine array. RESULTS: Our results indicated that hUCMSCs not only did not promote proliferation in cancer cells, but also inhibited migration. In addition, they inhibited tube formation in human umbilical vein endothelial cells (HUVECs). Although hAMSCs also showed inhibitory effects on cancer cell motility, the proliferation of cancer cells was indeed enhanced. The in vivo data revealed that hUCMSCs did not promote tumor progression in lung adenocarcinoma and gastric carcinoma xenografts. Nevertheless, hAMSCs could do. The results from murine experimental metastatic model also demonstrated that neither hUCMSCs nor hAMSCs significantly enhanced the lung metastasis. The data from cytokine array showed that 11 inflammatory factors, 8 growth factors and 11 chemokines were remarkably secreted and changed. CONCLUSIONS: In view of the data from in vitro and in vivo studies, the exploitation of hUCMSCs in new therapeutic strategies should be safe compared to hAMSCs under malignant conditions. Moreover, this is the first report to systematically elucidate the possible molecular mechanisms involved in UCMSC- and AMSC-affected tumor growth and metastasis.


Subject(s)
Amnion/cytology , Cell Communication , Cell Transformation, Neoplastic/metabolism , Mesenchymal Stem Cells/metabolism , Umbilical Cord/cytology , Animals , Biomarkers , Cell Differentiation , Cell Line, Tumor , Cell Movement , Cell Proliferation , Coculture Techniques , Culture Media, Conditioned , Cytokines/metabolism , Disease Models, Animal , Heterografts , Human Umbilical Vein Endothelial Cells , Humans , Immunophenotyping , Mesenchymal Stem Cells/cytology , Mice , Neoplasm Metastasis
SELECTION OF CITATIONS
SEARCH DETAIL
...