Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Part Fibre Toxicol ; 19(1): 5, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996492

ABSTRACT

BACKGROUND: Fine particulate matter (PM2.5) exposure accelerates atherosclerosis and contains known ovotoxic chemicals. However, effects of exposure to PM2.5 on the finite ovarian follicle pool have hardly been investigated, nor have interactions between ovarian and cardiovascular effects. We hypothesized that subchronic inhalation exposure to human-relevant concentrations of PM2.5 results in destruction of ovarian follicles via apoptosis induction, as well as accelerated recruitment of primordial follicles into the growing pool. Further, we hypothesized that destruction of ovarian follicles enhances the adverse cardiovascular effects of PM2.5 in females. RESULTS: Hyperlipidemic apolipoprotein E (Apoe) null ovary-intact or ovariectomized female mice and testis-intact male mice were exposed to concentrated ambient PM2.5 or filtered air for 12 weeks, 5 days/week for 4 h/day using a versatile aerosol concentration enrichment system. Primordial, primary, and secondary ovarian follicle numbers were decreased by 45%, 40%, and 17%, respectively, in PM2.5-exposed ovary-intact mice compared to controls (P < 0.05). The percentage of primary follicles with granulosa cells positive for the mitosis marker Ki67 was increased in the ovaries from PM2.5-exposed females versus controls (P < 0.05), consistent with increased recruitment of primordial follicles into the growing pool. Exposure to PM2.5 increased the percentages of primary and secondary follicles with DNA damage, assessed by γH2AX immunostaining (P < 0.05). Exposure to PM2.5 increased the percentages of apoptotic antral follicles, determined by TUNEL and activated caspase 3 immunostaining (P < 0.05). Removal of the ovaries and PM2.5-exposure exacerbated the atherosclerotic effects of hyperlipidemia in females (P < 0.05). While there were statistically significant changes in blood pressure and heart rate variability in PM2.5-compared to Air-exposed gonad-intact males and females and ovariectomized females, the changes were not consistent between exposure years and assessment methods. CONCLUSIONS: These results demonstrate that subchronic PM2.5 exposure depletes the ovarian reserve by increasing recruitment of primordial follicles into the growing pool and increasing apoptosis of growing follicles. Further, PM2.5 exposure and removal of the ovaries each increase atherosclerosis progression in Apoe-/- females. Premature loss of ovarian function is associated with increased risk of osteoporosis, cardiovascular disease and Alzheimer's disease in women. Our results thus support possible links between PM2.5 exposure and other adverse health outcomes in women.


Subject(s)
Ovarian Reserve , Animals , Apolipoproteins , Apolipoproteins E/genetics , Female , Male , Mice , Mice, Knockout , Ovarian Follicle , Particulate Matter/toxicity
2.
Biol Reprod ; 102(5): 1065-1079, 2020 04 24.
Article in English | MEDLINE | ID: mdl-31950131

ABSTRACT

The tripeptide thiol antioxidant glutathione (GSH) has multiple physiological functions. Female mice lacking the modifier subunit of glutamate cysteine ligase (GCLM), the rate-limiting enzyme in GSH synthesis, have decreased GSH concentrations, ovarian oxidative stress, preimplantation embryonic mortality, and accelerated age-related decline in ovarian follicles. We hypothesized that supplementation with thiol antioxidants, N-acetyl cysteine (NAC), or α-lipoic acid (ALA) will rescue this phenotype. Gclm-/- and Gclm+/+ females received 0 or 80 mM NAC in drinking water from postnatal day (PND) 21-30; follicle growth was induced with equine chorionic gonadotropin (eCG) on PND 27, followed by an ovulatory dose of human CG and mating with a wild type male on PND 29 and zygote harvest 20 h after hCG. N-acetyl cysteine supplementation failed to rescue the low rate of second pronucleus formation in zygotes from Gclm-/- versus Gclm+/+ females. In the second study, Gclm-/- and Gclm+/+ females received diet containing 0, 150, or 600 mg/kg ALA beginning at weaning and were mated with wild type males from 8 to 20 weeks of age. α-Lipoic acid failed to rescue the decreased offspring production of Gclm-/- females. However, 150 mg/kg diet ALA partially rescued the accelerated decline in primordial follicles, as well as the increased recruitment of follicles into the growing pool and the increased percentages of follicles with γH2AX positive oocytes or granulosa cells of Gclm-/- females. We conclude that ovarian oxidative stress is the cause of accelerated primordial follicle decline, while GSH deficiency per se may be responsible for preimplantation embryonic mortality in Gclm-/- females.


Subject(s)
Acetylcysteine/pharmacology , Antioxidants/pharmacology , Glutamate-Cysteine Ligase/metabolism , Glutathione/metabolism , Ovarian Follicle/physiology , Thioctic Acid/pharmacology , Acetylcysteine/administration & dosage , Animals , Antioxidants/administration & dosage , Diet , Dietary Supplements , Estrous Cycle , Female , Genotype , Glutamate-Cysteine Ligase/genetics , Glutathione/deficiency , Glutathione/genetics , Male , Mice , Mice, Knockout , Oocytes , Thioctic Acid/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...