Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 13: 982981, 2022.
Article in English | MEDLINE | ID: mdl-36225581

ABSTRACT

The high variability and unpredictability of the plasma concentration of voriconazole (VRC) pose a major challenge for clinical administration. The aim of this study was to develop a population pharmacokinetics (PPK) model of VRC and identify the factors influencing VRC PPK in patients with talaromycosis. Medical records and VRC medication history of patients with talaromycosis who were treated with VRC as initial therapy were collected. A total of 233 blood samples from 69 patients were included in the study. A PPK model was developed using the nonlinear mixed-effects models (NONMEM). Monte Carlo simulation was applied to optimize the initial dosage regimens with a therapeutic range of 1.0-5.5 mg/L as the target plasma trough concentration. A one-compartment model with first-order absorption and elimination adequately described the data. The typical voriconazole clearance was 4.34 L/h, the volume of distribution was 97.4 L, the absorption rate constant was set at 1.1 h-1, and the bioavailability was 95.1%. Clearance was found to be significantly associated with C-reactive protein (CRP). CYP2C19 polymorphisms had no effect on voriconazole pharmacokinetic parameters. Monte Carlo simulation based on CRP levels showed that a loading dose of 250 mg/12 h and a maintenance dose of 100 mg/12 h are recommended for patients with CRP ≤ 96 mg/L, whereas a loading dose of 200 mg/12 h and a maintenance dose of 75 mg/12 h are recommended for patients with CRP > 96 mg/L. The average probability of target attainment of the optimal dosage regimen in CRP ≤ 96 mg/L and CRP > 96 mg/L groups were 61.3% and 13.6% higher than with empirical medication, and the proportion of Cmin > 5.5 mg/L decreased by 28.9%. In conclusion, the VRC PPK model for talaromycosis patients shows good robustness and predictive performance, which can provide a reference for the clinical individualization of VRC. Adjusting initial dosage regimens based on CRP may promote the rational use of VRC.

2.
J Clin Med ; 11(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36143037

ABSTRACT

Originally considered to be a plant pathogen, reports of phaeohyphomycosis due to Curvularia lunata (C. lunata) in animals and humans are increasing. However, studies on the pathogenesis, virulence, and epidemiology of C. lunata have rarely been discussed. In the present study, BALB/c mice were experimentally inoculated with C. lunata suspension by different routes and the course of infection was evaluated. In addition, the in vitro antifungal susceptibility of C. lunata against six commonly used antifungals was evaluated using the microdilution method. Inoculation resulted in skin lesions in animals inoculated intraperitonially and subcutaneously. Infection was confirmed by both mycological and histopathologic examination. C. lunata spores and hyphae were detected in the histopathologic sections stained with hexamine silver staining. In addition, voriconazole (VRC) demonstrated greater activity against C. lunata when compared to the other antifungals, whereas fluconazole (FLC) was the least active antifungal with a minimum inhibitory concentration (MIC) range of 8-16 µg/mL. Further studies are necessary to understand the pathogenicity of C. lunata and uncover the mystery of this fungus.

SELECTION OF CITATIONS
SEARCH DETAIL
...