Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Opin Drug Metab Toxicol ; 19(1): 43-51, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36867504

ABSTRACT

BACKGROUND: Apixaban is a superior direct oral anticoagulant exihibiting interindividual variability in concentration and response in the real world. The present study aimed to identify genetic biomarkers associated with pharmacokinetics (PK) and pharmacodynamics (PD) of apixaban in healthy Chinese subjects. METHODS: This multicenter study included 181 healthy Chinese adults taking a single dose of 2.5 mg or 5 mg apixaban and assessed their PK and PD parameters. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed using the Affymetrix Axiom CBC_PMRA Array. Candidate gene association analysis and genome-wide association study were conducted to identify genes with a predictive value for PK and PD parameters of apixaban. RESULTS: Several ABCG2 variants were associated with Cmax and AUC0-t of apixaban (p < 6.12 × 10-5) and also presented significant differences of anti-Xa3h activity and dPT3h according to different ABCG2 genotypes (p < 0.05). Besides, ABLIM2 variants were found to be associated with PK characteristics and F13A1 and C3 variants were associated with PD characteristics of apixaban (p < 9.46 × 10-8). CONCLUSION: ABCG2 variants were found to be ideal genetic biomarkers for both PK and PD characteristics of apixaban. ABLIM2, F13A1 and C3 were identified as potential candidate genes associated with inter-individual variability of apixaban. This study was registered on ClinicalTrials.gov NCT03259399.


Subject(s)
East Asian People , Factor Xa Inhibitors , Genome-Wide Association Study , Adult , Humans , Biomarkers , Healthy Volunteers , Factor Xa Inhibitors/pharmacokinetics
2.
Dev Cell ; 56(21): 2980-2994.e6, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34619097

ABSTRACT

The metabolic coupling of Schwann cells (SCs) and peripheral axons is poorly understood. Few molecules in SCs are known to regulate axon stability. Using SC-specific Rheb knockout mice, we demonstrate that Rheb-regulated mitochondrial pyruvate metabolism is critical for SC-mediated non-cell-autonomous regulation of peripheral axon stability. Rheb knockout suppresses pyruvate dehydrogenase (PDH) activity (independently of mTORC1) and shifts pyruvate metabolism toward lactate production in SCs. The increased lactate causes age-dependent peripheral axon degeneration, affecting peripheral nerve function. Lactate, as an energy substrate and a potential signaling molecule, enhanced neuronal mitochondrial metabolism and energy production of peripheral nerves. Albeit beneficial to injured peripheral axons in the short term, we show that persistently increased lactate metabolism of neurons enhances ROS production, eventually damaging mitochondria, neuroenergetics, and axon stability. This study highlights the complex roles of lactate metabolism to peripheral axons and the importance of lactate homeostasis in preserving peripheral nerves.


Subject(s)
Axons/metabolism , Mitochondria/metabolism , Pyruvates/metabolism , Schwann Cells/metabolism , Animals , Cells, Cultured , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Neurons/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...