Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 470: 134232, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38593666

ABSTRACT

In a 120-day microcosm incubation experiment, we investigated the impact of arsenic contamination on soil microbial nutrient metabolism, focusing on carbon cycling processes. Our study encompassed soil basal respiration, key enzyme activities (particularly, ß-1,4-N-acetylglucosaminidase and phosphatases), microbial biomass, and community structure. Results revealed a substantial increase (1.21-2.81 times) in ß-1,4-N-acetylglucosaminidase activities under arsenic stress, accompanied by a significant decrease (9.86%-45.20%) in phosphatase activities (sum of acid and alkaline phosphatases). Enzymatic stoichiometry analysis demonstrated the mitigation of microbial C and P requirements in response to arsenic stress. The addition of C-sources alleviated microbial C requirements but exacerbated P requirements, with the interference amplitude increasing with the complexity of the C-source. Network analysis unveiled altered microbial nutrient requirements and an increased resistance process of microbes under arsenic stress. Microbial carbon use efficiency (CUE) and basal respiration significantly increased (1.17-1.59 and 1.18-3.56 times, respectively) under heavy arsenic stress (500 mg kg-1). Arsenic stress influenced the relative abundances of microbial taxa, with Gemmatimonadota increasing (5.5-50.5%) and Bacteroidota/ Nitrospirota decreasing (31.4-47.9% and 31.2-63.7%). Application of C-sources enhanced microbial resistance to arsenic, promoting cohesion among microorganisms. These findings deepen our understanding of microbial nutrient dynamics in arsenic-contaminated areas, which is crucial for developing enzyme-based toxicity assessment systems for soil arsenic contamination.


Subject(s)
Arsenic , Carbon , Soil Microbiology , Soil Pollutants , Arsenic/metabolism , Arsenic/toxicity , Carbon/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Bacteria/metabolism , Bacteria/drug effects , Phosphorus/metabolism , Soil/chemistry
2.
mLife ; 2(4): 350-364, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38818274

ABSTRACT

The emergence and rapid spread of antimicrobial resistance is of global public health concern. The gut microbiota harboring diverse commensal and opportunistic bacteria that can acquire resistance via horizontal and vertical gene transfers is considered an important reservoir and sink of antibiotic resistance genes (ARGs). In this review, we describe the reservoirs of gut ARGs and their dynamics in both animals and humans, use the One Health perspective to track the transmission of ARG-containing bacteria between humans, animals, and the environment, and assess the impact of antimicrobial resistance on human health and socioeconomic development. The gut resistome can evolve in an environment subject to various selective pressures, including antibiotic administration and environmental and lifestyle factors (e.g., diet, age, gender, and living conditions), and interventions through probiotics. Strategies to reduce the abundance of clinically relevant antibiotic-resistant bacteria and their resistance determinants in various environmental niches are needed to ensure the mitigation of acquired antibiotic resistance. With the help of effective measures taken at the national, local, personal, and intestinal management, it will also result in preventing or minimizing the spread of infectious diseases. This review aims to improve our understanding of the correlations between intestinal microbiota and antimicrobial resistance and provide a basis for the development of management strategies to mitigate the antimicrobial resistance crisis.

SELECTION OF CITATIONS
SEARCH DETAIL
...