Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37015498

ABSTRACT

This article studies group-wise point set registration and makes the following contributions: "FuzzyGReg", which is a new fuzzy cluster-based method to register multiple point sets jointly, and "FuzzyQA", which is the associated quality assessment to check registration accuracy automatically. Given a group of point sets, FuzzyGReg creates a model of fuzzy clusters and equally treats all the point sets as the elements of the fuzzy clusters. Then, the group-wise registration is turned into a fuzzy clustering problem. To resolve this problem, FuzzyGReg applies a fuzzy clustering algorithm to identify the parameters of the fuzzy clusters while jointly transforming all the point sets to achieve an alignment. Next, based on the identified fuzzy clusters, FuzzyQA calculates the spatial properties of the transformed point sets and then checks the alignment accuracy by comparing the similarity degrees of the spatial properties of the point sets. When a local misalignment is detected, a local re-alignment is performed to improve accuracy. The proposed method is cost-efficient and convenient to be implemented. In addition, it provides reliable quality assessments in the absence of ground truth and user intervention. In the experiments, different point sets are used to test the proposed method and make comparisons with state-of-the-art registration techniques. The experimental results demonstrate the effectiveness of our method. The code is available at https://gitsvn-nt.oru.se/qianfang.liao/FuzzyGRegWithQA.

2.
IEEE Trans Cybern ; 51(2): 947-960, 2021 Feb.
Article in English | MEDLINE | ID: mdl-30872246

ABSTRACT

In order to better handle the coupling effects when controlling multiple-input multiple-output (MIMO) systems, taking the decentralized control structure as the basis, this paper proposes a sparse control strategy and a decoupling control strategy. Type-1 and type-2 Takagi-Sugeno (T-S) fuzzy models are used to describe the MIMO system, and the relative normalized gain array-based criterion is employed to measure the coupling effects. The main contributions include: 1) compared to the previous studies, a manner with less computational cost to build fuzzy models for the MIMO systems is provided, and a more accurate method to construct the so-called effective T-S fuzzy model (ETSM) to express the coupling effects is developed; 2) for the sparse control strategy, four indexes are defined in order to extend a decentralized control structure to a sparse one. Afterward, an ETSM-based method is presented that a sparse control system can be realized by designing multiple independent single-input single-output (SISO) control loops; and 3) for the decoupling control strategy, a novel and simple ETSM-based decoupling compensator is developed that can effectively compensate for both steady and dynamic coupling effects. As a result, the MIMO controller design can be transformed to multiple noninteracting SISO controller designs. Both of the sparse and decoupling strategies allow to use linear SISO control algorithms to regulate a closely coupled nonlinear MIMO system without knowing its exact mathematical functions. Two examples are used to show the effectiveness of the proposed strategies.

3.
IEEE Trans Pattern Anal Mach Intell ; 43(9): 3229-3246, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32149624

ABSTRACT

This study presents a new point set registration method to align 3D range scans. In our method, fuzzy clusters are utilized to represent a scan, and the registration of two given scans is realized by minimizing a fuzzy weighted sum of the distances between their fuzzy cluster centers. This fuzzy cluster-based metric has a broad basin of convergence and is robust to noise. Moreover, this metric provides analytic gradients, allowing standard gradient-based algorithms to be applied for optimization. Based on this metric, the outlier issues are addressed. In addition, for the first time in rigid point set registration, a registration quality assessment in the absence of ground truth is provided. Furthermore, given specified rotation and translation spaces, we derive the upper and lower bounds of the fuzzy cluster-based metric and develop a branch-and-bound (BnB)-based optimization scheme, which can globally minimize the metric regardless of the initialization. This optimization scheme is performed in an efficient coarse-to-fine fashion: First, fuzzy clustering is applied to describe each of the two given scans by a small number of fuzzy clusters. Then, a global search, which integrates BnB and gradient-based algorithms, is implemented to achieve a coarse alignment for the two scans. During the global search, the registration quality assessment offers a beneficial stop criterion to detect whether a good result is obtained. Afterwards, a relatively large number of points of the two scans are directly taken as the fuzzy cluster centers, and then, the coarse solution is refined to be an exact alignment using the gradient-based local convergence. Compared to existing counterparts, this optimization scheme makes a large improvement in terms of robustness and efficiency by virtue of the fuzzy cluster-based metric and the registration quality assessment. In the experiments, the registration results of several 3D range scan pairs demonstrate the accuracy and effectiveness of the proposed method, as well as its superiority to state-of-the-art registration approaches.

4.
Front Psychol ; 12: 701281, 2021.
Article in English | MEDLINE | ID: mdl-35140643

ABSTRACT

Event-based prospective memory (ProM) refers to remembering to execute planned actions in response to a target ProM cues. Encoding modality influences ProM performance; visual encoding has been studied more than auditory encoding. Further, it has not yet been examined whether different encoding may influence ProM performance in different encoding modalities. This study examines the effects of encoding modality (visual vs. auditory), cue-encoding specificity (specific cue vs. non-specific cue), and encoding modes (standard vs. implementation intention) on event-based ProM tasks. In Experiment 1, cue specificity and encoding modality were manipulated as a within-groups encoding of visual cues is more commonly and between-groups variable. Results revealed the facilitative effect of cue specificity on ProM performance. Also, with respect to encoding modality, participants showed better performance when receiving auditory instructions compared with the visual encoding condition. In Experiment 2, as in Experiment 1, cue specificity and encoding modality were manipulated. Encoding mode was added as a new between-group variable. Result revealed that there was a significant interaction between encoding modality and encoding modes. Visual implementation intention encoding was a more effective method for improving ProM performance compared with visual standard encoding. Furthermore, there was a significant interaction between cue-encoding specificity and encoding modes. Implementation intention encoding enhances ProM performance in non-specific cue-encoding conditions. Overall, the present study found that (1) auditory encoding modality showed superior ProM performance compared with visual encoding, although implementation intention had facilitative on ProM performance regardless of the encoding modalities, and (2) there was better ProM performance under specific encoding compared with non-specific encoding, and implementation intention had a facilitative effect on ProM performance in the non-specific condition.

5.
IEEE Trans Cybern ; 49(8): 2845-2859, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30072352

ABSTRACT

This paper develops an innovative multilateral teleoperation system with two haptic devices on the master side and a newly designed reconfigurable multi-fingered robot on the slave side. A novel nonsingular fast terminal sliding-mode algorithm, together with varying dominance factors for cooperation, is proposed to offer this system's fast position and force tracking, as well as an integrated perception for the operator on the reconfigurable slave robot (manipulator). The Type-2 fuzzy model is used to describe the overall system dynamics, and accordingly a new fuzzy-model-based state observer is proposed to compensate for system uncertainties. A sliding-mode adaptive controller is designed to deal with the varying zero drift of the force sensors and force observers. The stability of the closed-loop system under time-varying delays is proved using Lyapunov-Krasovskii functions. Finally, experiments to grasp different objects are performed to verify the effectiveness of this multilateral teleoperation system.

6.
Comput Methods Biomech Biomed Engin ; 20(9): 929-940, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28421821

ABSTRACT

Extravehicular activity (EVA) is an inevitable task for astronauts to maintain proper functions of both the spacecraft and the space station. Both experimental research in a microgravity simulator (e.g. neutral buoyancy tank, zero-g aircraft or a drop tower/tube) and mathematical modeling were used to study EVA to provide guidance for the training on Earth and task design in space. Modeling has become more and more promising because of its efficiency. Based on the task analysis, almost 90% of EVA activity is accomplished through upper limb motions. Therefore, focusing on upper limb models of the body and space suit is valuable to this effort. In previous modeling studies, some multi-rigid-body systems were developed to simplify the human musculoskeletal system, and the space suit was mostly considered as a part of the astronaut body. With the aim to improve the reality of the models, we developed an astronauts' upper limb model, including a torque model and a muscle-force model, with the counter torques from the space suit being considered as a boundary condition. Inverse kinematics and the Maggi-Kane's method was applied to calculate the joint angles, joint torques and muscle force given that the terminal trajectory of upper limb motion was known. Also, we validated the muscle-force model using electromyogram (EMG) data collected in a validation experiment. Muscle force calculated from our model presented a similar trend with the EMG data, supporting the effectiveness and feasibility of the muscle-force model we established, and also, partially validating the joint model in kinematics aspect.


Subject(s)
Astronauts , Computer Simulation , Models, Theoretical , Motion , Space Suits , Torque , Upper Extremity/physiology , Biomechanical Phenomena , Electromyography , Extravehicular Activity , Humans , Male , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...