Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 29(8): 084002, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29339567

ABSTRACT

Recently, red blood cell (RBC) membrane-coated nanoparticles have attracted much attention because of their excellent immune escapability; meanwhile, gold nanocages (AuNs) have been extensively used for cancer therapy due to their photothermal effect and drug delivery capability. The combination of the RBC membrane coating and AuNs may provide an effective approach for targeted cancer therapy. However, few reports have shown the utilization of combining these two technologies. Here, we design erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. First, anti-EpCam antibodies were used to modify the RBC membranes to target 4T1 cancer cells. Second, the antitumor drug paclitaxel (PTX) was encapsulated into AuNs. Then, the AuNs were coated with the modified RBC membranes. These new nanoparticles were termed EpCam-RPAuNs. We characterized the capability of the EpCam-RPAuNs for selective tumor targeting via exposure to near-infrared irradiation. The experimental results demonstrate that EpCam-RPAuNs can effectively generate hyperthermia and precisely deliver the antitumor drug PTX to targeted cells. We also validated the biocompatibility of the EpCam-RAuNs in vitro. By combining the molecularly modified targeting RBC membrane and AuNs, our approach provides a new way to design biomimetic nanoparticles to enhance the surface functionality of nanoparticles. We believe that EpCam-RPAuNs can be potentially applied for cancer diagnoses and therapies.

2.
ACS Nano ; 11(4): 3496-3505, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28272874

ABSTRACT

Biomimetic cell membrane-coated nanoparticles (CM-NPs) with superior biochemical properties have been broadly utilized for various biomedical applications. Currently, researchers primarily focus on using ultrasonic treatment and mechanical extrusion to improve the synthesis of CM-NPs. In this work, we demonstrate that microfluidic electroporation can effectively facilitate the synthesis of CM-NPs. To test it, Fe3O4 magnetic nanoparticles (MNs) and red blood cell membrane-derived vesicles (RBC-vesicles) are infused into a microfluidic device. When the mixture of MNs and RBC-vesicles flow through the electroporation zone, the electric pulses can effectively promote the entry of MNs into RBC-vesicles. After that, the resulting RBC membrane-capped MNs (RBC-MNs) are collected from the chip and injected into experimental animals to test the in vivo performance. Owing to the superior magnetic and photothermal properties of the MN cores and the long blood circulation characteristic of the RBC membrane shells, core-shell RBC-MNs were used for enhanced tumor magnetic resonance imaging (MRI) and photothermal therapy (PTT). Due to the completer cell membrane coating, RBC-MNs prepared by microfluidic electroporation strategy exhibit significantly better treatment effect than the one fabricated by conventional extrusion. We believe the combination of microfluidic electroporation and CM-NPs provides an insight into the synthesis of bioinpired nanoparticles to improve cancer diagnosis and therapy.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Coated Materials, Biocompatible/chemistry , Electroporation , Erythrocyte Membrane/metabolism , Magnetite Nanoparticles/chemistry , Microfluidic Analytical Techniques , Animals , Coated Materials, Biocompatible/chemical synthesis , Erythrocyte Membrane/chemistry , Humans , MCF-7 Cells , Magnetic Resonance Imaging , Mammary Neoplasms, Experimental/diagnostic imaging , Mammary Neoplasms, Experimental/drug therapy , Mice , Mice, Inbred BALB C , Mice, Nude , Particle Size , Phototherapy , RAW 264.7 Cells , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...