Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Infect Dis Poverty ; 9(1): 112, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32787916

ABSTRACT

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) had spread worldwide. Although the world has intensively focused on the epidemic center during this period of time, it is imperative to emphasize that more attention should also be paid to some impoverished areas in China since they are more vulnerable to disease outbreak due to their weak health service capacities. Therefore, this study took Liangshan Yi Autonomous Prefecture as an example to analyze the COVID-19 epidemic in the impoverished area, evaluate the control effect and explore future control strategies. METHODS: In this study, we collected information including age, gender, nationality, occupation, and address of all COVID-19 cases reported from 25 January 2020 to 23 April 2020 in Liangshan Prefecture from the Nationwide Notifiable Infectious Diseases Reporting Information System (NIDRIS), which were used under license and not publicly available. Additionally, we retrieved other information of cases through epidemiological investigation reports reviewing. Data were analyzed using the software Excel 2010 and SPSS 17.0. The geographic distribution of cases was mapped using ArcGIS10.2. RESULTS: By 23 April 2020, a total of 13 COVID-19 cases and two asymptomatic SARS-CoV-2 carriers were reported in Liangshan, in three family clusters. Among the cases, eight cases had a history of sojourning in Hubei Province (61.54%), of which six were related to Wuhan. Cases aged under 44 years accounted for 61.54%, with no child case. The delay of patients' hospital visiting, and the low degree of cooperation in epidemiological investigation are problems. CONCLUSIONS: During the study period, Liangshan was well under control. This was mainly contributed to strict preventive strategies aimed at local culture, inter-sectoral coordination and highly degree of public cooperation. Besides, some possible environmentally and culturally preventive factors (e.g., rapid air flow and family concept) would affect disease prevention and control. In the next step, the health education about COVID-19 should be strengthened and carried out according to the special culture of ethnic minorities to enhance public awareness of timely medical treatment.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Poverty Areas , Adult , Age Distribution , Aged , COVID-19 , Carrier State/epidemiology , Carrier State/transmission , Carrier State/virology , China/epidemiology , Cluster Analysis , Contact Tracing , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Female , Humans , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Quarantine , Spatial Analysis , Time Factors , Young Adult
2.
Zhonghua Shao Shang Za Zhi ; 25(5): 325-30, 2009 Oct.
Article in Chinese | MEDLINE | ID: mdl-19951553

ABSTRACT

OBJECTIVE: To systematically evaluate the influence of glutamine-enhanced enteral nutrition on clinical prognosis and treatment cost of patients with critical illness. METHODS: Randomized controlled trials (RCTs) since 1976 were searched in 8 biomedical databases, such as MEDLINE, EMBASE, SCI, Cochran Library, and Chinese Biomedicine Database. Bibliography of retrieved papers and personal files were searched as well. RCTs were evaluated with inclusion criteria: (1) RCTs were enrolled, parallel control was set up; (2) Patients with critical illness, with their acute physiology and chronic health evaluation score over 10, or with total burn surface area over 30%TBSA; (3) The only difference between experimental and control groups was the addition of glutamine in enteral nutrition; (4) Clinical outcome index included mortality, nosocomial infection rate, length of hospital stay, organ dysfunction rate, and treatment cost. Methodological quality of the study was assessed based on Cochrane Reviewers' Handbook and Jadad's Score Scale. Statistical software RevMan 5.0 was used for Meta-analysis. RESULTS: Among 224 related articles, 7 RCTs met all inclusion criteria. Mortality: death events among 545 patients were reported in 5 RCTs. There was no heterogeneity among the 5 RCTs (P = 0.46), relative risk (RR) = 0.94, 95% confidence interval (CI) 0.68 - 1.30, P = 0.70. No statistical difference was found between glutamine group and control group in respect of death risk (P > 0.05). Nosocomial infection rate:nosocomial infection events among 489 patients were reported in 3 RCTs. No heterogeneity was found among the 3 RCTs (P = 0.08). Fixed-effect model was applied. RR = 0.72, 95%CI 0.52 - 0.99, P = 0.04. Nosocomial infection rate of glutamine group was 28% lower than that of control group. Organ dysfunction rate: organ dysfunction events among 460 patients were reported in 3 RCTs. No heterogeneity was found among the 3 RCTs (P = 0.65). Fixed-effect model was applied. RR = 1.27, 95%CI 0.70 - 2.30, P = 0.43. No statistical difference was found between glutamine group and control group in respect of organ dysfunction rate (P > 0.05). Length of hospital stay:length of intensive care unit (ICU) stay of patients were reported in 4 RCTs, but 3 of them reported by median (interquartile ranges) and thus made Meta-analysis unavailable. No statistical difference was found between glutamine group and control group in respect of length of ICU stay. The other RCT reported length of ICU stay by mean standard deviation and showed no statistical difference between glutamine group and control group. Length of hospital stay was reported in 3 RCTs with severely burned patients. No heterogeneity was found among the 3 RCTs (P = 0.08). Fixed-effect model (Inverse Variance method) was applied, and it was shown that length of hospital stay of patients in glutamine group was 7.24 days fewer than that of control group by a mean difference of -7.24, 95%CI -13.28 to -1.19, P = 0.02. CONCLUSIONS: Administration of Glutamine-enhanced enteral nutrition in patients with critical illness may reduce nosocomial infection rate, and shorten length of hospital stay. Studies with a large sample are needed to verify the efficiency of glutamine-enhanced enteral nutrition on lowering mortality of patients with critical illness and its cost-effectiveness.


Subject(s)
Critical Illness , Enteral Nutrition , Glutamine/therapeutic use , Humans , Meta-Analysis as Topic , Randomized Controlled Trials as Topic , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...