Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Breast Cancer Res ; 26(1): 70, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654332

ABSTRACT

BACKGROUND: Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer due to its aggressive characteristics and lack of effective therapeutics. However, the mechanism underlying its aggressiveness remains largely unclear. S-adenosylmethionine decarboxylase proenzyme (AMD1) overexpression occurs specifically in BLBC. Here, we explored the potential molecular mechanisms and functions of AMD1 promoting the aggressiveness of BLBC. METHODS: The potential effects of AMD1 on breast cancer cells were tested by western blotting, colony formation, cell proliferation assay, migration and invasion assay. The spermidine level was determined by high performance liquid chromatography. The methylation status of CpG sites within the AMD1 promoter was evaluated by bisulfite sequencing PCR. We elucidated the relationship between AMD1 and Sox10 by ChIP assays and quantitative real-time PCR. The effect of AMD1 expression on breast cancer cells was evaluated by in vitro and in vivo tumorigenesis model. RESULTS: In this study, we showed that AMD1 expression was remarkably elevated in BLBC. AMD1 copy number amplification, hypomethylation of AMD1 promoter and transcription activity of Sox10 contributed to the overexpression of AMD1 in BLBC. AMD1 overexpression enhanced spermidine production, which enhanced eIF5A hypusination, activating translation of TCF4 with multiple conserved Pro-Pro motifs. Our studies showed that AMD1-mediated metabolic system of polyamine in BLBC cells promoted tumor cell proliferation and tumor growth. Clinically, elevated expression of AMD1 was correlated with high grade, metastasis and poor survival, indicating poor prognosis of breast cancer patients. CONCLUSION: Our work reveals the critical association of AMD1-mediated spermidine-eIF5A hypusination-TCF4 axis with BLBC aggressiveness, indicating potential prognostic indicators and therapeutic targets for BLBC.


Subject(s)
Breast Neoplasms , Cell Proliferation , Eukaryotic Translation Initiation Factor 5A , Gene Expression Regulation, Neoplastic , Lysine/analogs & derivatives , Peptide Initiation Factors , RNA-Binding Proteins , Spermidine , Transcription Factor 4 , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/genetics , Mice , Animals , Spermidine/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Transcription Factor 4/metabolism , Transcription Factor 4/genetics , Cell Line, Tumor , Promoter Regions, Genetic , Adenosylmethionine Decarboxylase/metabolism , Adenosylmethionine Decarboxylase/genetics , Cell Movement/genetics , DNA Methylation , Prognosis , SOXE Transcription Factors/metabolism , SOXE Transcription Factors/genetics
2.
Cancer Lett ; 582: 216527, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38048842

ABSTRACT

Basal-like breast cancer (BLBC) is the most aggressive subtype with poor prognosis; however, the mechanisms underlying aggressiveness in BLBC remain poorly understood. In this study, we showed that in contrast to other subtypes, inositol monophosphatase 2 (IMPA2) was dramatically increased in BLBC. Mechanistically, IMPA2 expression was upregulated due to copy number amplification, hypomethylation of IMPA2 promoter and MYC-mediated transcriptional activation. IMPA2 promoted MI-PI cycle and IP3 production, and IP3 then elevated intracellular Ca2+ concentration, leading to efficient activation of NFAT1. In turn, NFAT1 up-regulated MYC expression, thereby fulfilling a positive feedback loop that enhanced aggressiveness of BLBC cells. Knockdown of IMPA2 expression caused the inhibition of tumorigenicity and metastasis of BLBC cells in vitro and in vivo. Clinically, high IMPA2 expression was strongly correlated with large tumor size, high grade, metastasis and poor survival, indicating poor prognosis in breast cancer patients. These findings suggest that IMPA2-mediated MI-PI cycle allows crosstalk between metabolic and oncogenic pathways to promote BLBC progression.


Subject(s)
Breast Neoplasms , Humans , Female , Feedback , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Promoter Regions, Genetic
3.
J Exp Clin Cancer Res ; 41(1): 169, 2022 May 07.
Article in English | MEDLINE | ID: mdl-35526049

ABSTRACT

BACKGROUND: Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer because of its aggressive biological characteristics and no effective targeted agents. However, the mechanism underlying its aggressive behavior remain poorly understood. ß1,3-N-acetylglucosaminyltransferase V (B3GNT5) overexpression occurs specifically in BLBC. Here, we studied the possible molecular mechanisms of B3GBT5 promoting the aggressiveness of BLBC. METHODS: The potential effects of B3GNT5 on breast cancer cells were tested by colony formation, mammosphere formation, cell proliferation assay, flow cytometry and Western blotting. The glycosylation patterns of B3GNT5 and associated functions were determined by Western blotting, quantitative real-time PCR and flow cytometry. The effect of B3GNT5 expression on BLBC was assessed by in vitro and in vivo tumorigenesis model. RESULTS: In this study, we showed that B3GNT5 copy number amplification and hypomethylation of B3GNT5 promoter contributed to the overexpression of B3GNT5 in BLBC. Knockout of B3GNT5 strongly reduced surface expression of SSEA-1 and impeded cancer stem cell (CSC)-like properties of BLBC cells. Our results also showed that B3GNT5 protein was heavily N-glycosylated, which is critical for its protein stabilization. Clinically, elevated expression of B3GNT5 was correlated with high grade, large tumor size and poor survival, indicating poor prognosis of breast cancer patients. CONCLUSIONS: Our work uncovers the critical association of B3GNT5 overexpression and glycosylation with enhanced CSCs properties in BLBC. These findings suggest that B3GNT5 has the potential to become a prognostic marker and therapeutic target for BLBC.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Antineoplastic Agents/therapeutic use , Breast Neoplasms/pathology , Female , Glycosylation , Humans , Neoplastic Stem Cells/pathology
4.
Front Oncol ; 11: 780094, 2021.
Article in English | MEDLINE | ID: mdl-34746019

ABSTRACT

BACKGROUND: Basal-like breast cancer (BLBC) is associated with a poor clinical outcome; however, the mechanism of BLBC aggressiveness is still unclear. It has been shown that a linker histone functions as either a positive or negative regulator of gene expression in tumors. Here, we aimed to investigate the possible involvement and mechanism of HIST1H1B in BLBC progression. EXPERIMENTAL DESIGN: We analyzed multiple gene expression datasets to determine the relevance of HIST1H1B expression with BLBC. We employed quantitative real-time PCR, transwell assay, colony formation assay, and mammosphere assay to dissect the molecular events associated with the expression of HIST1H1B in human breast cancer. We studied the association of HIST1H1B with CSF2 by ChIP assay. Using tumorigenesis assays, we determine the effect of HIST1H1B expression on tumorigenicity of BLBC cells. RESULTS: Here, we show that the linker histone HIST1H1B is dramatically elevated in BLBC due to HIST1H1B copy number amplification and promoter hypomethylation. HIST1H1B upregulates colony-stimulating factor 2 (CSF2) expression by binding the CSF2 promoter. HIST1H1B expression promotes, whereas knockdown of HIST1H1B expression suppresses tumorigenicity. In breast cancer patients, HIST1H1B expression is positively correlated with large tumor size, high grade, metastasis and poor survival. CONCLUSION: HIST1H1B contributes to basal-like breast cancer progression by modulating CSF2 expression, indicating a potential prognostic marker and therapeutic target for this disease.

5.
Cell Death Dis ; 11(7): 520, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647142

ABSTRACT

Breast cancer is considered to be the most prevalent cancer in women worldwide, and metastasis is the primary cause of death. Protease-activated receptor 1 (PAR1) is a GPCR family member involved in the invasive and metastatic processes of cancer cells. However, the functions and underlying mechanisms of PAR1 in breast cancer remain unclear. In this study, we found that PAR1 is highly expressed in high invasive breast cancer cells, and predicts poor prognosis in ER-negative and high-grade breast cancer patients. Mechanistically, Twist transcriptionally induces PAR1 expression, leading to inhibition of Hippo pathway and activation of YAP/TAZ; Inhibition of PAR1 suppresses YAP/TAZ-induced epithelial-mesenchymal transition (EMT), invasion, migration, cancer stem cell (CSC)-like properties, tumor growth and metastasis of breast cancer cells in vitro and in vivo. These findings suggest that PAR1 acts as a direct transcriptionally target of Twist, can promote EMT, tumorigenicity and metastasis by controlling the Hippo pathway; this may lead to a potential therapeutic target for treating invasive breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Nuclear Proteins/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Twist-Related Protein 1/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Disease Progression , Epithelial-Mesenchymal Transition , Female , HeLa Cells , Heterografts , Hippo Signaling Pathway , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice , Mice, SCID , Neoplasm Metastasis , Poly (ADP-Ribose) Polymerase-1/biosynthesis , Signal Transduction
6.
Theranostics ; 10(10): 4644-4658, 2020.
Article in English | MEDLINE | ID: mdl-32292520

ABSTRACT

Rationale: Basal-like breast cancer (BLBC) is associated with high grade, distant metastasis, and poor prognosis; however, the mechanism underlying aggressiveness of BLBC is still unclear. Emerging evidence has suggested that phospholipid scramblase 1 (PLSCR1) is involved in tumor progression. Here, we aimed to study the possible involvement and molecular mechanisms of PLSCR1 contributing to the aggressive behavior of BLBC. Methods: The potential functions of PLSCR1 in breast cancer cells were assessed by Western blotting, colony formation, migration and invasion, Cell Counting Kit-8 assay, mammosphere formation and flow cytometry. The relationship between nuclear translocation of PLSCR1 and transactivation of STAT1 was examined by immunostaining, co-IP, ChIP, and quantitative reverse transcription PCR. The effect of PLSCR1 expression on BLBC cells was determined by in vitro and in vivo tumorigenesis and a lung metastasis mouse model. Results: Compared to other subtypes, PLSCR1 was considerably increased in BLBC. Phosphorylation of PLSCR1 at Tyr 69/74 contributed to the nuclear translocation of this protein. PLSCR1 was enriched in the promoter region of STAT1 and enhanced STAT3 binding to the STAT1 promoter, resulting in transactivation of STAT1; STAT1 then enhanced cancer stem cell (CSC)-like properties that promoted BLBC progression. The knockdown of PLSCR1 led to significant inhibitory effects on proliferation, migration, invasion, tumor growth and lung metastasis of BLBC cells. Clinically, high PLSCR1 expression was strongly correlated with large tumor size, high grade, metastasis, chemotherapy resistance, and poor survival, indicating poor prognosis in breast cancer patients. Conclusions: Our data show that overexpression and nuclear translocation of PLSCR1 provide tumorigenic and metastatic advantages by activating STAT1 signaling in BLBC. This study not only reveals a critical mechanism of how PLSCR1 contributes to BLBC progression, but also suggests potential prognostic indicators and therapeutic targets for this challenging disease.


Subject(s)
Breast Neoplasms/genetics , Phospholipid Transfer Proteins/genetics , Protein Transport/genetics , STAT1 Transcription Factor/genetics , Animals , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Movement , Cell Proliferation , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, SCID , Neoplastic Stem Cells/metabolism , Phospholipid Transfer Proteins/metabolism , Phosphorylation/physiology , Prognosis , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction , Transcriptional Activation
7.
Theranostics ; 9(1): 34-47, 2019.
Article in English | MEDLINE | ID: mdl-30662552

ABSTRACT

Basal-like breast cancer (BLBC) is the most aggressive subtype with a poor clinical outcome; however, the molecular mechanisms underlying aggressiveness in BLBC remain poorly understood. Methods: The effects of gamma-aminobutyrate aminotransferase (ABAT) on GABA receptors, Ca2+-NFAT1 axis, and cancer cell behavior were assessed by Ca2+ imaging, Western blotting, immunostaining, colony formation, and migration and invasion assays. We elucidated the relationship between ABAT and Snail by luciferase reporter and ChIP assays. The effect of ABAT expression on BLBC cells was determined by in vitro and in vivo tumorigenesis and a lung metastasis mouse model. Results: We showed that, compared to other subtypes, ABAT was considerably decreased in BLBC. Mechanistically, ABAT expression was downregulated due to Snail-mediated repression leading to increased GABA production. GABA then elevated intracellular Ca2+ concentration by activating GABA-A receptor (GABAA), which contributed to the efficient activation of NFAT1 in BLBC cells. ABAT expression resulted in inhibition of tumorigenicity, both in vitro and in vivo, and metastasis of BLBC cells. Thus, loss of ABAT contributed to BLBC aggressiveness by activating the Ca2+-NFAT1 axis. In breast cancer patients, loss of ABAT expression was strongly correlated with large tumor size, high grade and metastatic tendency, poor survival, and chemotherapy resistance. Conclusions: Our findings have provided underlying molecular details for the aggressive behavior of BLBC. The Snail-mediated downregulation of ABAT expression in BLBC provides tumorigenic and metastatic advantages by activating GABA-mediated Ca2+-NFAT1 axis. Thus, our results have identified potential prognostic indicators and therapeutic targets for this challenging disease.


Subject(s)
4-Aminobutyrate Transaminase/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/physiopathology , Calcium/metabolism , NFATC Transcription Factors/metabolism , Animals , Cations, Divalent/metabolism , Cell Line, Tumor , GABAergic Neurons , Humans , Mice , Models, Theoretical
8.
Sci Rep ; 8(1): 16743, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30425310

ABSTRACT

Basal-like breast cancer (BLBC) is associated with a poor clinical outcome due to the few treatment options and absence of effective targeted agents. Here, we show that malic enzyme 1 (ME1) is dramatically upregulated in BLBC due to ME1 copy number amplification. ME1 expression increases glucose uptake and lactate production, and reduces oxygen consumption, leading to aerobic glycolysis. ME1 expression promotes, whereas knockdown of ME1 expression suppresses tumorigenicity. In breast cancer patients, ME1 expression is positively correlated with large tumor size, high grade, poor survival, and chemotherapy resistance. Our study not only contributes to a new understanding of how metabolic reprogramming contributes to BLBC progression, but also provides a potential prognostic marker and therapeutic target for this challenging disease.


Subject(s)
Breast Neoplasms/diagnosis , Disease Progression , Malate Dehydrogenase/metabolism , Aerobiosis , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation , Gene Dosage/genetics , Glycolysis , Humans , Prognosis , Tumor Hypoxia , Up-Regulation
9.
J Exp Med ; 215(6): 1679-1692, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29728441

ABSTRACT

Basal-like breast cancer (BLBC) is associated with a poor clinical outcome as a result of the few treatment options and poor therapeutic response. Here, we report that elevated expression of urine diphosphate-galactose ceramide galactosyltransferase (UGT8) specifically occurs in BLBC and predicts poor prognosis in breast cancer patients. UGT8 expression is transcriptionally up-regulated by Sox10, triggering the sulfatide biosynthetic pathway; increased sulfatide activates integrin αVß5-mediated signaling that contributes to BLBC progression. UGT8 expression promotes, whereas UGT8 knockdown suppresses tumorigenicity and metastasis. Importantly, we identify that zoledronic acid (ZA), a marketed drug for treating osteoporosis and bone metastasis, is a direct inhibitor of UGT8, which blocks the sulfatide biosynthetic pathway. Significantly, a clinically achievable dosage of ZA exhibits apparent inhibitory effect on migration, invasion, and lung metastasis of BLBC cells. Together, our study suggests that UGT8 is a potential prognostic indicator and druggable target of BLBC and that pharmacologic inhibition of UGT8 by ZA offers a promising opportunity for treating this challenging disease.


Subject(s)
Breast Neoplasms/pathology , Disease Progression , Ganglioside Galactosyltransferase/antagonists & inhibitors , Receptors, Vitronectin/metabolism , Signal Transduction , Sulfoglycosphingolipids/metabolism , Animals , Biosynthetic Pathways/drug effects , Breast Neoplasms/genetics , Carcinogenesis/drug effects , Carcinogenesis/pathology , Cell Line, Tumor , Cell Movement/drug effects , Female , Ganglioside Galactosyltransferase/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice, SCID , Neoplasm Invasiveness , Neoplasm Metastasis , SOXE Transcription Factors/metabolism , Signal Transduction/drug effects , Survival Analysis , Up-Regulation/drug effects , Zoledronic Acid/pharmacology
10.
J Exp Med ; 214(4): 1065-1079, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28270406

ABSTRACT

Basal-like breast cancer (BLBC) is associated with high-grade, distant metastasis and poor prognosis. Elucidating the determinants of aggressiveness in BLBC may facilitate the development of novel interventions for this challenging disease. In this study, we show that aldo-keto reductase 1 member B1 (AKR1B1) overexpression highly correlates with BLBC and predicts poor prognosis in breast cancer patients. Mechanistically, Twist2 transcriptionally induces AKR1B1 expression, leading to nuclear factor κB (NF-κB) activation. In turn, NF-κB up-regulates Twist2 expression, thereby fulfilling a positive feedback loop that activates the epithelial-mesenchymal transition program and enhances cancer stem cell (CSC)-like properties in BLBC. AKR1B1 expression promotes, whereas AKR1B1 knockdown inhibits, tumorigenicity and metastasis. Importantly, epalrestat, an AKR1B1 inhibitor that has been approved for the treatment of diabetic complications, significantly suppresses CSC properties, tumorigenicity, and metastasis of BLBC cells. Together, our study identifies AKR1B1 as a key modulator of tumor aggressiveness and suggests that pharmacologic inhibition of AKR1B1 has the potential to become a valuable therapeutic strategy for BLBC.


Subject(s)
Aldehyde Reductase/physiology , Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition , Aldehyde Reductase/antagonists & inhibitors , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/etiology , Cell Line, Tumor , Cell Movement , Dinoprost/analysis , Disease Progression , Feedback, Physiological , Female , Humans , Mice , NF-kappa B/physiology , Neoplasm Invasiveness , Neoplastic Stem Cells/pathology , Transcription Factor RelA/physiology , Twist-Related Protein 2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...