Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Process Impacts ; 22(5): 1295-1305, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32347267

ABSTRACT

A total of 29 surface farmland soil samples were collected to investigate the spatial distribution and composition characteristics of 13 organophosphorus flame retardants (OPFRs), 11 polybrominated diphenyl ethers (PBDEs), and 8 novel brominated flame retardants (NBFRs) in Chengdu, China. The OPFRs were widely detected in the farmland soil with concentrations ranging from 2.92 to 160 ng g-1 dry weight (dw). BDE-209 was found with a concentration range of n.d. to 50.4 ng g-1 dw, and was the main PBDE congener accounting for 90% of ΣPBDEs in the surface farmland soil. In the case of NBFRs, only TBB and BTBPE were detected in the farmland soil from rural areas of Chengdu. There was no obvious spatial distribution of the OPFRs among different administrative regions in Chengdu (p > 0.05), but the maximum concentration of OPFRs was found in a furniture production area. Leaching experiments showed that the concentration of most of the investigated OPFRs in two kinds of soils with different mechanical compositions and TOC contents decreased with the increase of soil depth. Addition of DOM could decrease the OPFR levels in the leachate by less than 25%, with the exception of TCPP, which decreased by up to 45%. More importantly, TCEP and TCPP exhibited stronger mobility than the other OPFRs in soil, and the migration capacity of TCPP was more sensitive to the DOM level, indicating that TCEP might more easily migrate from soil to groundwater in the nature.


Subject(s)
Flame Retardants , Soil Pollutants , China , Environmental Monitoring , Halogenated Diphenyl Ethers , Soil
2.
Arch Environ Contam Toxicol ; 75(3): 367-376, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29691615

ABSTRACT

A total of 97 paired soil, outdoor dust, and indoor dust samples were collected in the national scale of China in summer, and the perchlorate levels were compared with those in soil and outdoor dust samples collected in winter in our previous study. The median perchlorate concentrations in the outdoor dust, indoor dust, and soil samples were 8.10, 11.4, and 0.05 mg/kg, respectively, which were significantly lower than those in the winter samples due to the natural factors and human activities. No significant differences in perchlorate concentrations were found between Northern and Southern China in the dust samples, whereas the difference was obtained in the soil samples. In the terms of possible source, the perchlorate levels in the outdoor dust exhibited strong correlation with SO42- (r2 = 0.458**) and NO3- (r2 = 0.389**), indicating part of perchlorate in outdoor environment was likely from atmospheric oxidative process in summer. The perchlorate, SO42-, and Cl- levels in the indoor dust were significantly related to those in the outdoor dust, suggesting that outdoor contaminants might be an important source for indoor environment. Furthermore, the human exposure to perchlorate was under relatively safe state in China except for special sites or periods with high perchlorate levels. Dust made an unexpected contribution of 41.3% to the total daily perchlorate intake for children, whereas 2.46% for adults in China based on biomonitoring, which deserves more attention.


Subject(s)
Air Pollutants/analysis , Environmental Exposure/analysis , Perchlorates/analysis , Perchlorates/toxicity , Soil Pollutants/analysis , Adult , Air Pollutants/toxicity , Air Pollution, Indoor/analysis , Child , China , Dust/analysis , Environmental Monitoring , Humans , Seasons , Soil Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...