Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Commun ; : 100930, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685708

ABSTRACT

Plants can shape their root microbiome to promote growth and nutrient uptake. PHOSPHATE STARVATION RESPONSE 2 (OsPHR2) is a central regulator of phosphate signaling in rice, but whether OsPHR2 can shape the root microbiome to promote phosphorus uptake is unclear. Here, we investigate the role of OsPHR2 in recruiting microbiota for phosphorus uptake using high-throughput sequencing and metabolite analysis. OsPHR2-overexpressing (OsPHR2 OE) rice showed 69.8% greater shoot P uptake in natural soil compared with sterilized soil under high-phosphorus (HP) conditions, but there was only a 54.8% increase in the wild-type (WT). The abundance of the family Pseudomonadaceae was significantly enriched in OsPHR2 OE roots relative to those of WT rice. Compared with the WT, OsPHR2 OE rice had a relatively higher abundance of succinic acid and methylmalonic acid, which could stimulate the growth of Pseudomonas sp. (P6). After inoculation with P6, phosphorus uptake in WT and OsPHR2 OE rice was higher than that in uninoculated rice under low-phosphorus (LP) conditions. Taken together, our results suggest that OsPHR2 can increase phosphorus use in rice through root exudate-mediated recruitment of Pseudomonas. This finding reveals a cooperative contribution of the OsPHR2-modulated root microbiome, which is important for improving phosphorus use in agriculture.

2.
Plant J ; 106(3): 706-719, 2021 05.
Article in English | MEDLINE | ID: mdl-33570751

ABSTRACT

Phosphorus is a crucial macronutrient for plant growth and development. The mechanisms for maintaining inorganic phosphate (Pi) homeostasis in rice are not well understood. The ubiquitin-conjugating enzyme variant protein OsUEV1B was previously found to interact with OsUbc13 and mediate lysine63-linked polyubiquitination. In the present study, we found OsUEV1B was specifically inhibited by Pi deficiency, and was localized in the nucleus and cytoplasm. Both osuev1b mutant and OsUEV1B-RNA interference (RNAi) lines displayed serious symptoms of toxicity due to Pi overaccumulation. Some Pi starvation inducible and phosphate transporter genes were upregulated in osuev1b mutant and OsUEV1B-RNAi plants in association with enhanced Pi acquisition, and representative Pi starvation responses, including stimulation of acid phosphatase activity and root hair growth, were also activated in the presence of sufficient Pi. A yeast two-hybrid screen revealed an interaction between OsUEV1B and OsVDAC1, which was confirmed by bimolecular fluorescence complementation and firefly split-luciferase complementation assays. OsVDAC1 encoded a voltage-dependent anion channel protein localized in the mitochondria, and OsUbc13 was shown to interact with OsVDAC1 via yeast two-hybrid and bimolecular fluorescence complementation assays. Under sufficient Pi conditions, similar to osuev1b, a mutation in OsVDAC1 resulted in significantly greater Pi concentrations in the roots and second leaves, improved acid phosphatase activity, and enhanced expression of the Pi starvation inducible and phosphate transporter genes compared with wild-type DongJin, whereas overexpression of OsVDAC1 had the opposite effects. OsUEV1B or OsVDAC1 knockout reduced the mitochondrial membrane potential and adenosine triphosphate levels. Moreover, overexpression of OsVDAC1 in osuev1b partially restored its high Pi concentration to a level between those of osuev1b and DongJin. Our results indicate that OsUEV1B is required for rice phosphate homeostasis.


Subject(s)
Homeostasis , Oryza/metabolism , Phosphates/metabolism , Plant Proteins/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Cell Nucleus/enzymology , Cell Nucleus/metabolism , Cytoplasm/enzymology , Cytoplasm/metabolism , Oryza/enzymology , Plant Proteins/physiology , Plant Roots/enzymology , Plant Roots/metabolism , Plant Shoots/enzymology , Plant Shoots/metabolism , Ubiquitin-Conjugating Enzymes/physiology
3.
Materials (Basel) ; 14(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430051

ABSTRACT

A concrete-filled steel tube (CFT) combines the advantages of concrete and steel in construction and structural applications. However, research on the time-dependent deformation of the CFT under long-term sustained loading are still limited, particularly for stress transfer between the steel tube and concrete due to creep. This study investigated the creep behavior of CFT over a long period of 400 days. The creep and shrinkage strain of CFT was significantly lower than those of concrete that was not confined within a steel tube. The vertical strains of the steel tube and concrete core were almost identical, and it was shown that they were well bonded and acted as a composite. The vertical stress of steel increased by 32.7%, whereas the vertical stress of concrete decreased by 15.8% at 375 days. The stress transfer is notable and cannot be neglected in CFT design. Moreover, the results of creep and shrinkage were compared to prediction values of the B4 model and B4-TW model to verify their validity.

4.
Materials (Basel) ; 13(12)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570950

ABSTRACT

Tensile strength is one of the important mechanical properties of concrete, but it is difficult to measure accurately due to the brittle nature of concrete in tension. The three widely used test methods for measuring the tensile strength of concrete each have their shortcomings: the direct tension test equipment is not easy to set up, particularly for alignment, and there are no standard test specifications; the tensile strengths obtained from the test method of splitting tensile strength (American Society for Testing and Materials, ASTM C496) and that of flexural strength of concrete (ASTM C78) are significantly different from the actual tensile strength owing to mechanisms of methodologies and test setup. The objective of this research is to develop a new concrete tensile strength test method that is easy to conduct and the result is close to the direct tension strength. By applying the strut-and-tie concept and modifying the experimental design of the ASTM C78, a new concrete tensile strength test method is proposed. The test results show that the concrete tensile strength obtained by this proposed method is close to the value obtained from the direct tension test for concrete with compressive strengths from 25 to 55 MPa. It shows that this innovative test method, which is precise and easy to conduct, can be an effective alternative for tensile strength of concrete.

5.
Rice (N Y) ; 12(1): 82, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31728660

ABSTRACT

BACKGROUND: Drought stress is one of the major abiotic stresses that restrict plant growth and development. 14-3-3 proteins have been validated to regulate many biological processes in plants. Previous research demonstrated that OsGF14b plays different roles in panicle and leaf blast resistance. In this study, we researched the function of OsGF14b in drought resistance in rice. FINDINGS: Here, we report that OsGF14b was strongly induced by soil drought stress. In comparison with wild type (WT), the osgf14b mutant exhibited improved resistance to drought and osmotic stress by changing the content of stress-relevant parameters, complementation of the osgf14b mutant restored the drought sensitivity to WT levels, whereas the OsGF14b-overexpression lines exhibited enhanced sensitivity to drought and osmotic stress. The osgf14b mutant plants were hypersensitive to abscisic acid (ABA), while the OsGF14b-overexpression plants showed reduced sensitivity to ABA. Furthermore, mutation and overexpression of OsGF14b affected the expression of stress-related genes under normal growth conditions and/or drought stress conditions. CONCLUSIONS: We have demonstrated that OsGF14b is involved in the drought resistance of rice plants, partially in an ABA-dependent manner.

6.
Materials (Basel) ; 9(4)2016 Apr 01.
Article in English | MEDLINE | ID: mdl-28773391

ABSTRACT

Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25-1 effective depth of the section column. Furthermore, the axial load-strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load-strain curves were carried out.

SELECTION OF CITATIONS
SEARCH DETAIL
...