Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Bioact Mater ; 42: 52-67, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39280584

ABSTRACT

Vascular calcification and vascular ageing are "silent" diseases but are highly prevalent in patients with end stage renal failure and type 2 diabetes, as well as in the ageing population. Melatonin (MT) has been shown to induce cardiovascular protection effects. However, the role of MT on vascular calcification and ageing has not been well-identified. In this study, the aortic transcriptional landscape revealed clues for MT related cell-to-cell communication between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) in vascular calcification and vascular ageing. Furthermore, we elucidated that it was exosomes that participate in the information transportation from ECs to VSMCs. The exosomes secreted from melatonin-treated ECs (MT-ECs-Exos) inhibited calcification and senescence of VSMCs. Mechanistically, miR-302d-5p was highly enriched in MT-ECs-Exos, while depletion of miR-302d-5p blocked the ability of MT-ECs-Exos to suppress VSMC calcification and senescence. Notably, Wnt3 was a bona fide target of miR-302d-5p and modulated VSMC calcification and senescence. Furthermore, we found that maturation of endothelial derived exosomal miR-302d-5p was promoted by WTAP in an N6-methyladenosine (m6A)-dependent manner. Interestingly, MT alleviated vascular calcification and ageing in 5/6-nephrectomy (5/6 NTP) mice, a chronic kidney disease (CKD) induced vascular calcification and vascular ageing mouse model. MT-ECs-Exos was absorbed by VSMCs in vivo and effectively prevented vascular calcification and ageing in 5/6 NTP mice. ECs-derived miR-302d-5p mediated MT induced anti-calcification and anti-ageing effects in 5/6 NTP mice. Our study suggests that MT-ECs-Exos alleviate vascular calcification and ageing through the miR-302d-5p/Wnt3 signaling pathway, dependent on m6A methylation.

2.
Cardiovasc Diabetol ; 23(1): 331, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252021

ABSTRACT

BACKGROUND: Visceral adipose tissue in individuals with obesity is an independent cardiovascular risk indicator. However, it remains unclear whether adipose tissue influences common cardiovascular diseases, such as atherosclerosis, through its secreted exosomes. METHODS: The exosomes secreted by adipose tissue from diet-induced obesity mice were isolated to examine their impact on the progression of atherosclerosis and the associated mechanism. Endothelial apoptosis and the proliferation and migration of vascular smooth muscle cells (VSMCs) within the atherosclerotic plaque were evaluated. Statistical significance was analyzed using GraphPad Prism 9.0 with appropriate statistical tests. RESULTS: We demonstrate that adipose tissue-derived exosomes (AT-EX) exacerbate atherosclerosis progression by promoting endothelial apoptosis, proliferation, and migration of VSMCs within the plaque in vivo. MicroRNA-132/212 (miR-132/212) was detected within AT-EX cargo. Mechanistically, miR-132/212-enriched AT-EX exacerbates palmitate acid-induced endothelial apoptosis via targeting G protein subunit alpha 12 and enhances platelet-derived growth factor type BB-induced VSMC proliferation and migration by targeting phosphatase and tensin homolog in vitro. Importantly, melatonin decreases exosomal miR-132/212 levels, thereby mitigating the pro-atherosclerotic impact of AT-EX. CONCLUSION: These data uncover the pathological mechanism by which adipose tissue-derived exosomes regulate the progression of atherosclerosis and identify miR-132/212 as potential diagnostic and therapeutic targets for atherosclerosis.


Subject(s)
Apoptosis , Atherosclerosis , Cell Movement , Cell Proliferation , Disease Models, Animal , Disease Progression , Exosomes , Mice, Inbred C57BL , MicroRNAs , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Plaque, Atherosclerotic , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Exosomes/metabolism , Exosomes/pathology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Cell Proliferation/drug effects , Apoptosis/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/drug effects , Cell Movement/drug effects , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Male , Signal Transduction , Cells, Cultured , Obesity/metabolism , Obesity/pathology , Mice, Knockout, ApoE , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/drug effects , Aortic Diseases/pathology , Aortic Diseases/metabolism , Aortic Diseases/genetics , Becaplermin/pharmacology , Becaplermin/metabolism , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/pathology , Mice , Humans
3.
J Am Heart Assoc ; 12(20): e029397, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37804190

ABSTRACT

Background There are limited data on low-density lipoprotein cholesterol (LDL-C) goal achievement per the 2019 European Society of Cardiology/European Atherosclerosis Society dyslipidemia management guidelines and its impact on long-term outcomes in patients undergoing coronary artery bypass grafting (CABG). We investigated the association between LDL-C levels attained 1 year after CABG and the long-term outcomes. Methods and Results A total of 2072 patients diagnosed with multivessel coronary artery disease and undergoing CABG between 2011 and 2020 were included. Patients were categorized by lipid levels at 1 year after CABG, and the occurrence of major adverse cardiovascular and cerebrovascular events (MACCEs) was evaluated. The goal of LDL-C <1.40 mmol/L was attained in only 310 patients (14.9%). During a mean follow-up of 4.2 years after the index 1-year assessment, 25.0% of the patients experienced MACCEs. Multivariable-adjusted hazard ratios (95% CIs) for MACCEs, cardiac death, nonfatal myocardial infarction, nonfatal stroke, revascularization, and cardiac rehospitalization were 1.94 (1.41-2.67), 2.27 (1.29-3.99), 2.45 (1.55-3.88), 1.17 (0.63-2.21), 2.47 (1.31-4.66), and 1.87 (1.19-2.95), respectively, in patients with LDL-C ≥2.60 mmol/L, compared with patients with LDL-C <1.40 mmol/L. The LDL-C levels at 1-year post-CABG were independently associated with long-term MACCEs. Conclusions This retrospective analysis demonstrates that lipid goals are not attained in the vast majority of patients at 1 year after CABG, which is independently associated with the increased risk of long-term MACCEs. Further prospective, multicenter studies are warranted to validate if intensive lipid management could improve the outcomes of patients undergoing CABG.


Subject(s)
Coronary Artery Disease , Dyslipidemias , Percutaneous Coronary Intervention , Humans , Retrospective Studies , Cholesterol, LDL , Treatment Outcome , Coronary Artery Bypass/adverse effects , Coronary Artery Disease/surgery , Coronary Artery Disease/etiology , Dyslipidemias/diagnosis , Dyslipidemias/drug therapy , Dyslipidemias/epidemiology
4.
J Nanobiotechnology ; 21(1): 315, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37667298

ABSTRACT

Vascular calcification often occurs in patients with chronic renal failure (CRF), which significantly increases the incidence of cardiovascular events in CRF patients. Our previous studies identified the crosstalk between the endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and the paracrine effect of VSMCs, which regulate the calcification of VSMCs. Herein, we aim to investigate the effects of exosomes secreted by high phosphorus (HPi) -induced adventitial fibroblasts (AFs) on the calcification of VSMCs and the underlying mechanism, which will further elucidate the important role of AFs in high phosphorus vascular wall microenvironment. The conditioned medium of HPi-induced AFs promotes the calcification of VSMCs, which is partially abrogated by GW4869, a blocker of exosomes biogenesis or release. Exosomes secreted by high phosphorus-induced AFs (AFsHPi-Exos) show similar effects on VSMCs. miR-21-5p is enriched in AFsHPi-Exos, and miR-21-5p enhances osteoblast-like differentiation of VSMCs by downregulating cysteine-rich motor neuron 1 (Crim1) expression. AFsHPi-Exos and exosomes secreted by AFs with overexpression of miR-21-5p (AFsmiR21M-Exos) significantly accelerate vascular calcification in CRF mice. In general, AFsHPi-Exos promote the calcification of VSMCs and vascular calcification by delivering miR-21-5p to VSMCs and subsequently inhibiting the expression of Crim1. Combined with our previous studies, the present experiment supports the theory of vascular wall microenvironment.


Subject(s)
Exosomes , MicroRNAs , Vascular Calcification , Animals , Mice , Endothelial Cells , Fibroblasts , Phosphorus , MicroRNAs/genetics , Bone Morphogenetic Protein Receptors
5.
Front Cardiovasc Med ; 10: 1198486, 2023.
Article in English | MEDLINE | ID: mdl-37701139

ABSTRACT

Background: Correlations between posttranslational modifications and atrial fibrillation (AF) have been demonstrated in recent studies. However, it is still unclear whether and how ubiquitylated proteins relate to AF in the left atrial appendage of patients with AF and valvular heart disease. Methods: Through LC-MS/MS analyses, we performed a study on tissues from eighteen subjects (9 with sinus rhythm and 9 with AF) who underwent cardiac valvular surgery. Specifically, we explored the ubiquitination profiles of left atrial appendage samples. Results: In summary, after the quantification ratios for the upregulated and downregulated ubiquitination cutoff values were set at >1.5 and <1:1.5, respectively, a total of 271 sites in 162 proteins exhibiting upregulated ubiquitination and 467 sites in 156 proteins exhibiting downregulated ubiquitination were identified. The ubiquitylated proteins in the AF samples were enriched in proteins associated with ribosomes, hypertrophic cardiomyopathy (HCM), glycolysis, and endocytosis. Conclusions: Our findings can be used to clarify differences in the ubiquitination levels of ribosome-related and HCM-related proteins, especially titin (TTN) and myosin heavy chain 6 (MYH6), in patients with AF, and therefore, regulating ubiquitination may be a feasible strategy for AF.

6.
Microbiol Res ; 266: 127238, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36274554

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA), a globally widespread pathogen that is highly resistant to antibiotics, can lead to serious infection, and has fairly limited treatment options. Over decades, extracellular vesicles (EVs) from MRSA have received increasing attention, and their roles in the pathogenesis of MRSA have been well studied. The secretion process of MRSA EVs is complex and regulated by various factors. During this process, EVs carry a variety of bioactive molecules including enzymes, lipoproteins, toxins, DNA, and RNA, which play important roles in antibiotic resistance, cytotoxicity, and immune escape. Biological enzymes and drug resistance genes are important factors for MRSA EVs to promote drug resistance. As the components of EVs are derived from MRSA, these compounds can trigger the immune response of the host, and thus have great potential as a vaccine. These lipid-coated vesicles secreted by MRSA contain a variety of bioactive factors, which are considered as the critical factors affecting the pathogenesis, drug resistance, and colonization of MRSA, and thus have the potential to treat these patients infected with MRSA. However, the clinical application of MRSA EVs as the acellular vaccines is still a long way off, and further research should be encouraged to bridge the gap between theoretical study and practical application.


Subject(s)
Extracellular Vesicles , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology
7.
Front Endocrinol (Lausanne) ; 13: 863708, 2022.
Article in English | MEDLINE | ID: mdl-35784574

ABSTRACT

Histone methylation is an epigenetic change mediated by histone methyltransferase, and has been connected to the beginning and progression of several diseases. The most common ailments that affect the elderly are cardiovascular and cerebrovascular disorders. They are the leading causes of death, and their incidence is linked to vascular calcification (VC). The key mechanism of VC is the transformation of vascular smooth muscle cells (VSMCs) into osteoblast-like phenotypes, which is a highly adjustable process involving a variety of complex pathophysiological processes, such as metabolic abnormalities, apoptosis, oxidative stress and signalling pathways. Many researchers have investigated the mechanism of VC and related targets for the prevention and treatment of cardiovascular and cerebrovascular diseases. Their findings revealed that histone lysine methylation modification may play a key role in the various stages of VC. As a result, a thorough examination of the role and mechanism of lysine methylation modification in physiological and pathological states is critical, not only for identifying specific molecular markers of VC and new therapeutic targets, but also for directing the development of new related drugs. Finally, we provide this review to discover the association between histone methylation modification and VC, as well as diverse approaches with which to investigate the pathophysiology of VC and prospective treatment possibilities.


Subject(s)
Lysine , Vascular Calcification , Aged , Histones/metabolism , Humans , Methylation , Prospective Studies , Vascular Calcification/genetics , Vascular Calcification/pathology
8.
Cell Death Dis ; 13(7): 650, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35882857

ABSTRACT

Arterial calcification is highly prevalent, particularly in patients with end-stage renal disease (ESRD). The osteogenic differentiation of vascular smooth muscle cells (VSMCs) is the critical process for the development of arterial calcification. However, the detailed mechanism of VSMCs calcification remains to be elucidated. Here, we investigated the role of exosomes (Exos) derived from endothelial cells (ECs) in arterial calcification and its potential mechanisms in ESRD. Accelerated VSMCs calcification was observed when VSMCs were exposed to ECs culture media stimulated by uremic serum or high concentration of inorganic phosphate (3.5 mM Pi). and the pro-calcification effect of the ECs culture media was attenuated by exosome depletion. Exosomes derived from high concentrations of inorganic phosphate-induced ECs (ECsHPi-Exos) could be uptaken by VSMCs and promoted VSMCs calcification. Microarray analysis showed that miR-670-3p was dramatically increased in ECsHPi-Exos compared with exosomes derived from normal concentrations of inorganic phosphate (0.9 mM Pi) induced ECs (ECsNPi-Exos). Mechanistically, insulin-like growth factor 1 (IGF-1) was identified as the downstream target of miR-670-3p in regulating VSMCs calcification. Notably, ECs-specific knock-in of miR-670-3p of the 5/6 nephrectomy with a high-phosphate diet (miR-670-3pEC-KI + NTP) mice that upregulated the level of miR-670-3p in artery tissues and significantly increased artery calcification. Finally, we validated that the level of circulation of plasma exosomal miR-670-3p was much higher in patients with ESRD compared with healthy controls. Elevated levels of plasma exosomal miR-670-3p were associated with a decline in IGF-1 and more severe artery calcification in patients with ESRD. Collectively, these findings suggested that ECs-derived exosomal miR-670-3p could promote arterial calcification by targeting IGF-1, which may serve as a potential therapeutic target for arterial calcification in ESRD patients.


Subject(s)
Exosomes , Kidney Failure, Chronic , MicroRNAs , Vascular Calcification , Animals , Culture Media/pharmacology , Endothelial Cells/metabolism , Exosomes/metabolism , Insulin-Like Growth Factor I/metabolism , Kidney Failure, Chronic/metabolism , Mice , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Osteogenesis , Phosphates/metabolism , Phosphorus/metabolism , Phosphorus/pharmacology , Vascular Calcification/metabolism
9.
J Nanobiotechnology ; 20(1): 334, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35842695

ABSTRACT

The pathogenesis of vascular calcification in diabetic patients remains elusive. As an effective information transmitter, small extracellular vesicles (sEVs) carry abundant microRNAs (miRNAs) that regulate the physiological and pathological states of recipient cells. In the present study, significant up-regulation of miR-126-5p was observed in sEVs isolated from human umbilical vein endothelial cells (HUVECs) stimulated with advanced glycation end-products (A-EC/sEVs). Intriguingly, these sEVs suppressed the osteogenic differentiation of vascular smooth muscle cells (VSMCs) by targeting BMPR1B, which encodes the receptor for BMP, thereby blocking the smad1/5/9 signalling pathway. In addition, knocking down miR-126-5p in HUVECs significantly diminished the anti-calcification effect of A-EC/sEVs in a mouse model of type 2 diabetes. Overall, miR-126-5p is highly enriched in sEVs derived from AGEs stimulated HUVECs and can target BMPR1B to negatively regulate the trans-differentiation of VSMCs both in vitro and in vivo.


Subject(s)
Diabetes Mellitus, Type 2 , Extracellular Vesicles , MicroRNAs , Vascular Calcification , Animals , Extracellular Vesicles/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice , MicroRNAs/metabolism , Osteogenesis , Vascular Calcification/metabolism , Vascular Calcification/pathology
10.
Front Cell Dev Biol ; 10: 774363, 2022.
Article in English | MEDLINE | ID: mdl-35198556

ABSTRACT

Arterial medial calcification is a common disease in patients with type 2 diabetes, end-stage renal disease and hypertension, resulting in high incidence and mortality of cardiovascular event. H19 has been demonstrated to be involved in cardiovascular diseases like aortic valve diseases. However, role of H19 in arterial medial calcification remains largely unknown. We identified that H19 was upregulated in ß-glycerophosphate (ß-GP) induced vascular smooth muscle cells (VSMCs), a cellular calcification model in vitro. Overexpression of H19 potentiated while knockdown of H19 inhibited osteogenic differentiation of VSMCs, as demonstrated by changes of osteogenic genes Runx2 and ALP as well as ALP activity. Notably, H19 interacted with miR-140-5p directly, as demonstrated by luciferase report system and RIP analysis. Mechanistically, miR-140-5p attenuated osteoblastic differentiation of VSMCs by targeting Satb2 and overexpression of miR-140-5p blocked H19 induced elevation of Satb2 as well as the promotion of osteoblastic differentiation of VSMCs. Interestingly, over-expression of Satb2 induced phosphorylation of ERK1/2 and p38MAPK. In conclusion, H19 promotes VSMC calcification by acting as competing endogenous RNA of miR-140-5p and at least partially by activating Satb2-induced ERK1/2 and p38MAPK signaling.

11.
Cell Death Dis ; 11(2): 131, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32071300

ABSTRACT

Abdominal Aortic aneurysm (AAA) is associated with chronic inflammation, cells apoptosis, and impairment of autophagy. BP-1-102, a novel potent STAT3 inhibitor, has been recently reported to significantly block inflammation-related signaling pathways of JAK2/STAT3 and NF-κB, as well as regulate autophagy. However, its role in vascular inflammation and AAA progression remains to be elucidated. In the present study, the effect and potential mechanisms of BP-1-102 on angiotensin II (AngII) induced AAA in ApoE-/- mice were investigated. AAA was induced in ApoE-/- mice with infusion of AngII for 28 days. BP-1-102 was administrated orally to mice every other day. Mice were sacrificed on day 7, day 14, and day 28 to evaluate the treatment effects. BP-1-102 markedly decreased AAA incidence and aortic diameter, maintained elastin structure and volume, reduced the expression of pro-inflammatory cytokines and MMPs, and inhibited inflammatory cells infiltration. Moreover, BP-1-102 dramatically reduced the expression of JAK2, p-STAT3, p-NF-κB, and Bcl-xL but maintained the expression of LC3B and Beclin in AAA tissues. In vitro, vascular smooth muscle cells (VSMCs) were treated with AngII and/or BP-1-102 at indicated time and concentration. BP-1-102 inhibited AngII-induced JAK2/STAT3 and NF-κB signaling activation and maintained autophagy-related proteins expression in VSMCs. Taken together, our findings suggest that BP-1-102 inhibits vascular inflammation and AAA progression through decreasing JAK2/STAT3 and NF-κB activation and maintaining autophagy.


Subject(s)
Aminosalicylic Acids/pharmacology , Aorta, Abdominal/drug effects , Aortic Aneurysm, Abdominal/prevention & control , Aortitis/prevention & control , Autophagy/drug effects , STAT3 Transcription Factor/antagonists & inhibitors , Sulfonamides/pharmacology , Angiotensin II , Animals , Aorta, Abdominal/metabolism , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Aortitis/chemically induced , Aortitis/metabolism , Aortitis/pathology , Apoptosis/drug effects , Autophagy-Related Proteins/metabolism , Cells, Cultured , Disease Models, Animal , Janus Kinase 2/metabolism , Male , Mice, Knockout, ApoE , NF-kappa B/metabolism , Phosphorylation , STAT3 Transcription Factor/metabolism , Signal Transduction , Vascular Remodeling/drug effects
12.
J Pineal Res ; 68(3): e12631, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31943334

ABSTRACT

In the elderly with atherosclerosis, hypertension and diabetes, vascular calcification and ageing are ubiquitous. Melatonin (MT) has been demonstrated to impact the cardiovascular system. In this study, we have shown that MT alleviates vascular calcification and ageing, and the underlying mechanism involved. We found that both osteogenic differentiation and senescence of vascular smooth muscle cells (VSMCs) were attenuated by MT in a MT membrane receptor-dependent manner. Moreover, exosomes isolated from VSMCs or calcifying vascular smooth muscle cells (CVSMCs) treated with MT could be uptaken by VSMCs and attenuated the osteogenic differentiation and senescence of VSMCs or CVSMCs, respectively. Moreover, we used conditional medium from MT-treated VSMCs and Transwell assay to confirm exosomes secreted by MT-treated VSMCs attenuated the osteogenic differentiation and senescence of VSMCs through paracrine mechanism. We also found exosomal miR-204/miR-211 mediated the paracrine effect of exosomes secreted by VSMCs. A potential target of these two miRs was revealed to be BMP2. Furthermore, treatment of MT alleviated vascular calcification and ageing in 5/6-nephrectomy plus high-phosphate diet-treated (5/6 NTP) mice, while these effects were partially reversed by GW4869. Exosomes derived from MT-treated VSMCs were internalised into mouse artery detected by in vivo fluorescence image, and these exosomes reduced vascular calcification and ageing of 5/6 NTP mice, but both effects were largely abolished by inhibition of exosomal miR-204 or miR-211. In summary, our present study revealed that exosomes from MT-treated VSMCs could attenuate vascular calcification and ageing in a paracrine manner through an exosomal miR-204/miR-211.


Subject(s)
Melatonin/pharmacology , MicroRNAs/metabolism , Muscle, Smooth, Vascular/drug effects , Vascular Calcification/metabolism , Aging , Animals , Cell Differentiation/drug effects , Exosomes/chemistry , Exosomes/metabolism , Humans , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Vascular Calcification/physiopathology
13.
J Card Surg ; 35(2): 441-443, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31730718

ABSTRACT

A 74-year-old woman with left main and three-vessel coronary artery disease was scheduled for off-pump coronary artery bypass grafting and developed acute severe cholecystitis preoperatively. Percutaneous gallbladder drainage was placed to achieve gallbladder decompression and infection control. Two weeks later, CABG and laparoscopic cholecystectomy were successfully performed at the same time.


Subject(s)
Cholecystectomy, Laparoscopic , Cholecystitis/surgery , Coronary Artery Bypass, Off-Pump , Coronary Artery Disease/surgery , Drainage/methods , Gallbladder/surgery , Aged , Cholecystitis/etiology , Coronary Artery Disease/complications , Coronary Artery Disease/diagnostic imaging , Female , Gallbladder/diagnostic imaging , Humans , Tomography, X-Ray Computed , Treatment Outcome
14.
Front Cell Dev Biol ; 8: 618228, 2020.
Article in English | MEDLINE | ID: mdl-33585452

ABSTRACT

End-stage renal disease (ESRD) patients usually develop extensive and progressive vascular calcification, and lots of calcification inhibitors as well as procalcifying factors are involved in the process. However, the mechanisms of vascular calcification in ESRD patients are still ill-defined. In the present study, we found that the plasma exosomes derived from ESRD patients (ESRD-Ex) promoted calcification of vascular smooth muscle cells (VSMCs) significantly, while plasma exosomes from renal transplant recipients (RTR-Ex) could partially attenuate VSMCs calcification. Moreover, the protein concentration of ESRD-Ex was significantly higher than plasma exosomes from the normal health control group (Nor-Ex) and RTR-Ex, and the content of both matrix gla protein (MGP) and Fetuin-A, the calcification inhibitors, were prominently lower in ESRD-Ex than those in Nor-Ex. The content of Annexin-A2, one of the calcification promoters, was significantly higher in ESRD-Ex and RTR-Ex than that in Nor-Ex. However, bone morphogenetic protein (BMP-2) and receptor activator for nuclear factor-κB ligand (Rankl) had no significant difference among the three groups. In addition, the content of Fetuin-A in RTR-Ex was higher than that in ESRD-Ex, although it was still lower than that in Nor-Ex. Furthermore, the levels of both Fetuin-A and MGP in plasma exosomes were negatively while the levels of Annexin-A2 in plasma exosomes was positively correlated to coronary artery calcification scores (CACS). These results indicated that ESRD-Ex significantly promoted VSMCs calcification, while renal transplantation could partially attenuate the procalcification effect of exosomes. Fetuin-A and MGP were decreased, but Annexin-A2 was increased in ESRD-Ex, and renal transplantation could increase the level of Fetuin-A rather than MGP.

15.
Aging (Albany NY) ; 11(20): 8760-8776, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31659144

ABSTRACT

Adipose tissue-derived adipokines mediate various kind of crosstalk between adipose tissue and other organs and thus regulate metabolism balance, inflammation state as well as disease progression. In particular, omentin-1, a newly found adipokine, has been reported to exhibit anti-calcification effects in vitro and in vivo. However, little is known about the function of endogenous adipose tissue-derived omentin-1 in arterial calcification and the detailed mechanism involved. Here, we demonstrated that global omentin-1 knockout (omentin-1-/-) resulted in more obvious arterial calcification in 5/6-nephrectomy plus high phosphate diet treated (5/6 NTP) mice while overexpression of omentin-1 attenuated attenuates osteoblastic differentiation and mineralisation of VSMCs in vitro and 5/6 NTP-induced mice arterial calcification in vivo. Moreover, we found that omentin-1 induced AMPK and Akt activation while inhibition of AMP-activated protein kinase (AMPK) and Akt signaling reversed the anti-calcification effect induced by omentin-1 both in vitro and in vivo. Our results suggest that adipose tissue-derived omentin-1 serves as a potential therapeutic target for arterial calcification and cardiovascular disease.


Subject(s)
Adipose Tissue/metabolism , Calcinosis/metabolism , Cytokines/metabolism , GPI-Linked Proteins/metabolism , Lectins/metabolism , Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , AMP-Activated Protein Kinase Kinases , Animals , Calcinosis/chemically induced , Cells, Cultured , Cytokines/genetics , GPI-Linked Proteins/genetics , Humans , Lectins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Osteocalcin/metabolism , Phosphorus, Dietary/adverse effects , Protein Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Random Allocation
16.
J Cell Mol Med ; 23(12): 8233-8245, 2019 12.
Article in English | MEDLINE | ID: mdl-31583844

ABSTRACT

Mesenchymal stem cells (MSCs) exhibit therapeutic benefits on aortic aneurysm (AA); however, the molecular mechanisms are not fully understood. The current study aimed to investigate the therapeutic effects and potential mechanisms of murine bone marrow MSC (BM-MSCs)-derived conditioned medium (MSCs-CM) on angiotensin II (AngII)-induced AA in apolipoprotein E-deficient (apoE-/- ) mice. Murine BM-MSCs, MSCs-CM or control medium were intravenously administrated into AngII-induced AA in apoE-/- mice. Mice were sacrificed at 2 weeks after injection. BM-MSCs and MSCs-CM significantly attenuated matrix metalloproteinase (MMP)-2 and MMP-9 expression, aortic elastin degradation and AA growth at the site of AA. These treatments with BM-MSCs and MSCs-CM also decreased Ly6chigh monocytes in peripheral blood on day 7 and M1 macrophage infiltration in AA tissues on day 14, whereas they increased M2 macrophages. In addition, BM-MSCs and MSCs-CM reduced MCP-1, IL-1Ra and IL-6 expression and increased IL-10 expression in AA tissues. In vitro, peritoneal macrophages were co-cultured with BM-MSCs or fibroblasts as control in a transwell system. The mRNA and protein expression of M2 macrophage markers were evaluated. IL-6 and IL-1ß were reduced, while IL-10 was increased in the BM-MSC systems. The mRNA and protein expression of M2 markers were up-regulated in the BM-MSC systems. Furthermore, high concentration of IGF1, VEGF and TGF-ß1 was detected in MSCs-CM. Our results suggest that MSCs-CM could prevent AA growth potentially through regulating macrophage polarization. These results may provide a new insight into the mechanisms of BM-MSCs in the therapy of AA.


Subject(s)
Aortic Aneurysm/prevention & control , Bone Marrow Cells/metabolism , Culture Media, Conditioned/pharmacology , Macrophage Activation/drug effects , Macrophages/drug effects , Mesenchymal Stem Cells/metabolism , Angiotensin II , Animals , Aorta/drug effects , Aorta/metabolism , Aorta/pathology , Aortic Aneurysm/chemically induced , Aortic Aneurysm/metabolism , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Cells, Cultured , Coculture Techniques , Gene Expression/drug effects , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Macrophage Activation/genetics , Macrophages/cytology , Macrophages/metabolism , Male , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice, Knockout
17.
Aging (Albany NY) ; 11(10): 3182-3197, 2019 05 25.
Article in English | MEDLINE | ID: mdl-31129659

ABSTRACT

Vascular calcification is one of the most important factors for cardiovascular and all-cause mortality in patients with end-stage renal diseases (ESRD). The current study was aimed to investigate the function and mechanisms of miR-34b on the calcification of vascular smooth muscle cells (VSMCs) both in vitro and in vivo. We found that the expression of miR-34b was significantly suppressed in VSMCs with high inorganic phosphate (Pi) treatment, as well as mouse arteries derived from 5/6 nephrectomy with a high-phosphate diet (0.9% Pi, 5/6 NTP) and human renal arteries from uraemia patients. Overexpression of miR-34b alleviated calcification of VSMCs, while VSMCs calcification was enhanced by inhibiting the expression of miR-34b. Bisulphite sequencing PCR (BSP) uncovered that CpG sites upstream of miR-34b DNA were hypermethylated in calcified VSMCs and calcified arteries due to 5/6 NTP, as well as calcified renal arterial tissues from uraemia patients. Meantime, increased DNA methyltransferase 3a (DNMT3a) resulted in the hypermethylation of miR-34b in VSMCs, while 5-aza-2'-deoxycytidine (5-aza) reduced the methylation rate of miR-34b and restored the expression of miR-34b in VSMCs. When DNMT3a was knocked down using DNMT3a siRNA, the effect of 3.5 mM of Pi on calcification of VSMCs was abrogated. In addition, Notch1 was validated as the functional target of miR-34b and involved in the process of calcification of VSMCs. Taken together, our data showed a specific role for miR-34b in regulating calcification of VSMCs both in vitro and in vivo, which was regulated by upstream DNA methylation of miR-34b and modulated by the downstream target gene expression, Notch1. These results suggested that modulation of miR-34b may offer new insight into a novel therapeutic approach for vascular calcification.


Subject(s)
DNA Methylation , MicroRNAs/metabolism , Receptor, Notch1/metabolism , Vascular Calcification/metabolism , Animals , Cell Differentiation , CpG Islands , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Humans , Male , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Osteoblasts , Renal Artery/metabolism , Uremia/metabolism
18.
Mol Med Rep ; 19(5): 3807-3814, 2019 May.
Article in English | MEDLINE | ID: mdl-30896834

ABSTRACT

MicroRNAs (miRNAs) are novel key regulators of cellular differentiation. miR­124 has been reported to regulate osteogenic differentiation of bone marrow­derived mesenchymal stem cells (BMSCs). However, the specific mechanisms involved have not yet been fully elucidated. The present study aimed to investigate the effect of miR­124 on osteogenic differentiation of BMSCs and its underlying mechanisms. In the present study, it was found that alkaline phosphatase (ALP) activity, osteocalcin (OC) secretion, and the protein levels of osterix (Sp7) and runt­related transcription factor 2 (Runx2) were significantly increased, whereas the expression of miR­124 was decreased in a time­dependent manner during osteogenic differentiation of BMSCs. Following overexpression of miR­124 via transfection of miR­124 mimics in BMSCs, Runx2 protein expression and ALP activity were significantly decreased. By contrast, inhibition of miR­124 expression led to an increase in ALP activity and Runx2 expression. Sp7 expression was suppressed in BMSCs transfected with miR­124 mimics while increased when miR­124 expression was inhibited, indicating that miR­124 regulates the expression of Sp7. Moreover, a luciferase reporter assay further verified that Sp7 is the direct target of miR­124. Finally, the effect of miR­124 inhibitor on promoting the differentiation of BMSCs was abolished following treatment with a small interfering RNA targeting Sp7. Taken together, the present study demonstrates that miR­124 inhibits the osteogenic differentiation of BMSCs by targeting Sp7.


Subject(s)
Cell Differentiation , Gene Expression Regulation , Mesenchymal Stem Cells/cytology , MicroRNAs/genetics , Osteogenesis , Sp7 Transcription Factor/metabolism , Cells, Cultured , Humans , Mesenchymal Stem Cells/metabolism , Sp7 Transcription Factor/genetics
19.
Endocr Relat Cancer ; 26(5): 525-538, 2019 05.
Article in English | MEDLINE | ID: mdl-30870812

ABSTRACT

Tumour-derived exosomes under hypoxic conditions contain informative miRNAs involved in the interaction of cancer and para-carcinoma cells, thus contributing to tissue remodelling of the tumour microenvironment (TME). Exosomes isolated from hypoxic papillary thyroid cancer cells, BCPAP cells and KTC-1 cells enhanced the angiogenesis of human umbilical vein endothelial cells (HUVECs) compared with exosomes isolated from normal thyroid follicular cell line (Nthy-ori-3-1), normoxic BCPAP or KTC-1 cells both in vitro and in vivo. miR-21-5p was significantly upregulated in exosomes from papillary thyroid cancer BCPAP cells under hypoxic conditions, while the exosomes isolated from hypoxic BCPAP cells with knockdown of miR-21-5p attenuated the promoting effect of angiogenesis. In addition, our experiment revealed that miR-21-5p directly targeted and suppressed TGFBI and COL4A1, thereby increasing endothelial tube formation. Furthermore, elevated levels of exosomal miR-21-5p are found in the sera of papillary thyroid cancer patients, which promote the angiogenesis of HUVECs. Taken together, our study reveals the cell interaction between hypoxic papillary thyroid cancer cells and endothelial cells, elucidating a new mechanism by which hypoxic papillary thyroid cancer cells increase angiogenesis via exosomal miR-21-5p/TGFBI and miR-21-5p/COL4A1 regulatory pathway.


Subject(s)
Biomarkers, Tumor/blood , Exosomes/metabolism , MicroRNAs/blood , Neovascularization, Pathologic/pathology , Thyroid Cancer, Papillary/blood supply , Thyroid Neoplasms/blood supply , Tumor Microenvironment , Animals , Case-Control Studies , Cell Proliferation , Collagen Type IV/blood , Extracellular Matrix Proteins/blood , Gene Expression Regulation, Neoplastic , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Hypoxia , Male , Mice , Mice, Inbred BALB C , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Prognosis , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Transforming Growth Factor beta/blood , Xenograft Model Antitumor Assays
20.
J Transl Med ; 16(1): 354, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30545380

ABSTRACT

Aortic aneurysm (AA) is defined as an enlargement of the aorta greater than 1.5 times its normal size. Early diagnosis of AA is challenging and mortality of AA is high. Curative pharmacological treatments for AA are still lacking, highlighting the need for better understanding of the underlying mechanisms of AA progression. Accumulating studies have proven that the polarization state of circulating monocyte-derived macrophages plays a crucial role in regulating the development of AA. Distinct macrophage subtypes display different functions. Several studies targeting macrophage polarization during AA formation and progression showed potential treatment effects. In this review, we focus on the recent advances of research on macrophage polarization in the progression of AA and propose that targeting macrophage polarization could hold great promise for preventing and treating AA.


Subject(s)
Aortic Aneurysm/pathology , Cell Polarity , Macrophages/pathology , Wound Healing , Animals , Aortic Aneurysm/therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL