Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(8): 6027-6043, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38598179

ABSTRACT

Targeting the programmed cell death protein-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway has evolved into one of the most promising strategies for tumor immunotherapy. Thus far, multiple monoclonal antibody drugs have been approved for treating a variety of tumors, while the development of small-molecule PD-1/PD-L1 inhibitors has lagged far behind, with only a few small-molecule inhibitors entering clinical trials. In addition to antibody drugs and small-molecule inhibitors, reducing the expression levels of PD-L1 has attracted extensive research interest as another promising strategy to target the PD-1/PD-L1 pathway. Herein, we analyze the structures and mechanisms of molecules that reduce PD-L1 expression and classify them as degraders and downregulators according to whether they directly bind to PD-L1. Moreover, we discuss the potential prospects for developing PD-L1-targeting drugs based on these molecules. It is hoped that this perspective will provide profound insights into the discovery of potent antitumor immunity drugs.


Subject(s)
B7-H1 Antigen , Programmed Cell Death 1 Receptor , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Down-Regulation/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Signal Transduction/drug effects
2.
Nat Prod Res ; : 1-9, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35983797

ABSTRACT

Phytochemical investigations on the fruits of Cascabela thevetia (L.) Lippold led to obtain three new cardenolides (1-3) and five known analogues (4-7). Their structures were elucidated by means of UV, IR, HR-ESI-MS, 1D and 2D NMR spectroscopic data analysis. Compounds 1 and 2 represent the first examples of naturally occurring cardenolides with 19-nor-5(10)-ene group and α-l-3-demethyl-thevetose, respectively. Compound 3 is a rare C-nor-D-homocardenolide in nature. All isolated cardenolides (1-7) were evaluated for their cytotoxic activities against four human cancer cell lines (MCF-7, HCT-116, HeLa and HepG2), and the results indicated the compounds with sugar units (1, 2, 4, and 5) exhibited stronger cytotoxic activities with IC50 values ranging between 0.022 and 0.308 µM.

SELECTION OF CITATIONS
SEARCH DETAIL
...