Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Imaging ; 69: 318-323, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33045476

ABSTRACT

OBJECTIVE: The chest computed tomography (CT) features of coronavirus disease 2019 (COVID-19) and Streptococcus pneumoniae pneumonia (S. pneumoniae pneumonia) were compared to provide further evidence for the differential imaging diagnosis of patients with these two types of pneumonia. METHODS: Clinical information and chest CT data of 149 COVID-19 patients between January 9, 2020 and March 15, 2020 and 97 patients with S. pneumoniae pneumonia between January 23, 2011 and March 18, 2020 in Zhongnan Hospital of Wuhan University were retrospectively analyzed. In addition, CT features were comparatively analyzed. RESULTS: According to the chest CT images, the probability of lung segmental and lobar pneumonia in S. pneumoniae pneumonia was higher than that in COVID-19(P<0.001); the probabilities of ground-glass opacity (GGO), the "crazy paving" sign, and abnormally thickened interlobular septa in COVID-19 were higher than those in S. pneumoniae pneumonia(P = 0.005, P<0.001, P<0.001, respectively); and the probabilities of consolidation lesions, bronchial wall thickening, centrilobular nodules, and pleural effusion in S. pneumoniae pneumonia were higher than those in COVID-19 (P<0.001, P = 0.001, P = 0.003, P = 0.001, respectively). CONCLUSION: The findings of GGO, the crazy paving sign, and abnormally thickened interlobular septa on chest CT were significantly higher in COVID-19 than S. pneumoniae pneumonia. The most important differential points on chest CT signs between COVID-19 and S. pneumoniae pneumonia were whether disease lesions were distributed in entire lung lobes and segments and whether the crazy paving sign, interlobular septal thickening, and consolidation lesions were found.


Subject(s)
COVID-19 , Coronavirus Infections , Pneumonia, Pneumococcal , Pneumonia, Viral , Tomography, X-Ray Computed , COVID-19/diagnostic imaging , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Diagnosis, Differential , Humans , Lung/diagnostic imaging , Pandemics , Pneumonia, Pneumococcal/diagnostic imaging , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Retrospective Studies , SARS-CoV-2 , Streptococcus pneumoniae
2.
Int J Nanomedicine ; 15: 1373-1385, 2020.
Article in English | MEDLINE | ID: mdl-32184592

ABSTRACT

BACKGROUND: Photothermal therapy (PTT) has great potential application in the treatment of tumors. However, due to the low penetration of near-infrared light (NIR) and the low concentration of nanomaterials in the tumor site, the application of PTT has been limited. PURPOSE: The objective of this study was to investigate the therapeutic effect of transcatheter intra-arterial infusion of lecithin-modified Bi nanoparticles (Bi-Ln NPs) combined with interventional PTT (IPTT) on hepatocellular carcinoma. METHODS: Bi-Ln NPs were prepared by emulsifying the hydrophobic Bi nanoparticles and lecithin, and the photothermal conversion and cytotoxicity of Bi-Ln NPs were then measured by infrared imaging and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, respectively. Twenty-four VX2 hepatic carcinoma rabbits were randomly divided into four groups. Rabbits in group A received Bi-Ln NPs by intra-arterial infusion and NIR laser treatment (IA Bi-Ln NPs + Laser), group B received Bi-Ln NPs by intravenous infusion and NIR laser treatment (IV Bi-Ln NPs + Laser), group C received PBS (phosphate buffer saline) via intra-arterial infusion with NIR laser treatment (IA PBS + Laser), group D received PBS via intra-arterial infusion (IA PBS). Transcatheter intra-arterial infusion was conducted by superselective intubation under digital subtraction angiography (DSA) guidance. IPTT was performed by introducing an NIR optical fiber access to the rabbit VX2 hepatic carcinoma under real-time ultrasound guidance. Magnetic resonance imaging (MRI) was performed to evaluate the tumor size. Hematoxylin and eosin (H&E) stain and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) were conducted 7 days after treatment to evaluate the necrosis rate and viability of tumor, respectively. RESULTS: The Bi-Ln NPs have the advantages of good biological compatibility and high photothermal conversion efficiency. Minimally invasive transcatheter intra-arterial infusion can markedly increase the concentration of Bi-Ln NPs in tumor tissues. IPTT can contribute to the significant improvement in the photothermal efficiency of Bi-Ln NPs. Compared to other groups, the group of IA Bi-Ln NPs + Laser showed a significantly higher tumor inhibition rate (TIR) of 93.38 ± 19.57%, a higher tumor necrosis rate of 83.12 ± 8.02%, and a higher apoptosis rate of (43.26 ± 10.65%) after treatment. CONCLUSION: Transcatheter intra-arterial infusion combined with interventional PTT (IPTT) is safe and effective in eradicating tumor cells and inhibiting tumor growth and may provide a novel and valuable choice for the treatment of hepatocellular carcinoma in the future.


Subject(s)
Bismuth/chemistry , Carcinoma, Hepatocellular/therapy , Liver Neoplasms, Experimental/therapy , Metal Nanoparticles/administration & dosage , Phototherapy , Ultrasonography/methods , Animals , Apoptosis , Carcinoma, Hepatocellular/pathology , Combined Modality Therapy , Female , Hepatic Artery , Infrared Rays , Infusions, Intra-Arterial , Lecithins/chemistry , Liver Neoplasms, Experimental/pathology , Male , Metal Nanoparticles/chemistry , Necrosis , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...