Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 77(3): 325-35, 2005 Jun 03.
Article in English | MEDLINE | ID: mdl-15878359

ABSTRACT

High density lipoprotein (HDL) has anti-inflammatory function. To investigate the effects of apolipoprotein A-I (ApoA-I), the major apolipoprotein of HDL, on activated neutrophils, we stimulated neutrophils in vitro with fMLP and PMA, as a receptor-binding and a nonreceptor-binding stimuli, respectively, and incubated ApoA-I with those neutrophils. Three conditions were utilized: 1) resting neutrophils + ApoA-I (0, 2.5,5, 10 microg/mL respectively), 2) fMLP(10(-7) mol/L)-activated neutrophils + ApoA-I (0, 2.5, 5, 10 microg/mL respectively), and 3) PMA(10(-7) mol/L)-activated neutrophils + ApoA-I (0, 2.5, 5, 10 microg/mL respectively). After incubation, we measured neutrophils adhesion to fibronectin, oxidative bust (O2- and H2O2 production), degranulation (release of MPO and elastase), and L929 cell mortality which were attacked by release-out of cytokines in activated neutrophils (using MTT). Our results showed that in vitro ApoA-I inhibits fMLP- and PMA- activated neutrophil adhesion, oxidative burst, degranulation and L929 cell mortality. These inhibition effects of ApoA-I on fMLP-activated neutrophils are more powerful than that on PMA-activated neutrophils. ApoA-I has no effect on resting neutrophils. We concluded that ApoA-I could diminish the function of activated neutrophils.


Subject(s)
Acute-Phase Reaction/immunology , Apolipoprotein A-I/pharmacology , Neutrophil Activation/drug effects , Neutrophils/drug effects , Animals , Apolipoprotein A-I/immunology , Cell Adhesion/physiology , Cell Line , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Neutrophil Activation/immunology , Neutrophils/immunology , Pancreatic Elastase/metabolism , Peroxidase/metabolism , Rabbits , Reactive Oxygen Species/metabolism , Receptors, Formyl Peptide/metabolism , Tetradecanoylphorbol Acetate/pharmacology
2.
World J Gastroenterol ; 11(7): 954-9, 2005 Feb 21.
Article in English | MEDLINE | ID: mdl-15742395

ABSTRACT

AIM: To investigate the possibility of recombinant high-density lipoprotein (rHDL) being a carrier for delivering antitumoral drug to hepatoma cells. METHODS: Recombinant complex of HDL and aclacinomycin (rHDL-ACM) was prepared by cosonication of apoproteins from HDL (Apo HDL) and ACM as well as phosphatidylcholine. Characteristics of the rHDL-ACM were elucidated by electrophoretic mobility, including the size of particles, morphology and entrapment efficiency. Binding activity of rHDL-ACM to human hepatoma cells was determined by competition assay in the presence of excess native HDL. The cytotoxicity of rHDL-ACM was assessed by MTT method. RESULTS: The density range of rHDL-ACM was 1.063-1.210 g/mL, and the same as that of native HDL. The purity of all rHDL-ACM preparations was more than 92%. Encapsulated efficiencies of rHDL-ACM were more than 90%. rHDL-ACM particles were typical sphere model of lipoproteins and heterogeneous in particle size. The average diameter was 31.26+/-5.62 nm by measure of 110 rHDL-ACM particles in the range of diameter of lipoproteins. rHDL-ACM could bind on SMMC-7721 cells, and such binding could be competed against in the presence of excess native HDL. rHDL-ACM had same binding capacity as native HDL. The cellular uptake of rHDL-ACM by SMMC-7721 hepatoma cells was significantly higher than that of free ACM at the concentration range of 0.5-10 microg/mL (P<0.01). Cytotoxicity of rHDL-ACM to SMMC-7721 cells was significantly higher than that of free ACM at concentration range of less than 5 microg/mL (P<0.01) and IC50 of rHDL-ACM was lower than IC50 of free ACM (1.68 nmol/L vs 3 nmol/L). Compared to L02 hepatocytes, a normal liver cell line, the cellular uptake of rHDL-ACM by SMMC-7721 cells was significantly higher (P<0.01) and in a dose-dependent manner at the concentration range of 0.5-10 microg/mL. Cytotoxicity of the rHDL-ACM to SMMC-7721 cells was significantly higher than that to L02 cells at concentration range of 1-7.5 microg/mL (P<0.01). IC50 for SMMC-7721 cells (1.68 nmol/L) was lower than that for L02 cells (5.68 nmol/L), showing a preferential cytotoxicity of rHDL-ACM for SMMC-7721 cells. CONCLUSION: rHDL-ACM complex keeps the basic physical and biological binding properties of native HDL and shows a preferential cytotoxicity for SMMC-7721 hepatoma to normal L02 hepatocytes. HDL is a potential carrier for delivering lipophilic antitumoral drug to hepatoma cells.


Subject(s)
Aclarubicin/analogs & derivatives , Aclarubicin/pharmacokinetics , Antibiotics, Antineoplastic/pharmacokinetics , Carcinoma, Hepatocellular , Drug Carriers/pharmacokinetics , Lipoproteins, HDL/pharmacokinetics , Liver Neoplasms , Cell Line, Tumor , Hepatocytes/cytology , Hepatocytes/drug effects , Humans
3.
Acta Biochim Biophys Sin (Shanghai) ; 36(6): 419-24, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15188057

ABSTRACT

High density lipoprotein (HDL) binds lipopolysaccharide (LPS or endotoxin) and neutralizes its toxicity. We investigated the function of Apolipoprotein A-I (ApoA-I), a major apolipoprotein in HDL, in this process. Mouse macrophages were incubated with LPS, LPS+ApoA-I, LPS+ApoA-I+LFF (lipoprotein-free plasma fraction d>1.210 g/ml), LPS+HDL, LPS+HDL+LFF, respectively. MTT method was used to detect the mortality of L-929 cells which were attacked by the release-out cytokines in LPS-activated macrophages. It was found that ApoA-I significantly decreased L-929 cells mortality caused by LPS treatment (LPS vs. LPS+ApoA-I, P<0.05) and this effect became even more significant when LFF was utilized (LPS vs. LPS+ApoA-I+LFF, P<0.01; LPS vs. LPS+HDL+LFF, P<0.01). There was no significant difference between LPS+ApoA-I+LFF and LPS+HDL+LFF treatment, indicating that ApoA-I was the main factor. We also investigated in vivo effects of ApoA-I on mouse mortality rate and survival time after LPS administration. We found that the mortality in LPS+ApoA-I group (20%) and in LPS+ApoA-I+LFF group (10%) was significantly lower than that in LPS group (80%) (P<0.05, P<0.01, respectively); the survival time was (43.20 +/- 10.13) h in LPS+ApoA-I group and (46.80 +/- 3.79) h in LPS+ApoA-I+LFF group, which were significantly longer than that in LPS group (16.25 +/- 17.28) h (P<0.01). We also carried out in vitro binding study to investigate the binding capacity of ApoA-I and ApoA-I+LFF to fluorescence labeled LPS (FITC-LPS). It was shown that both ApoA-I and ApoA-I+LFF could bind with FITC-LPS, however, the binding capacity of ApoA-I+LFF to FITC-LPS (64.47 +/- 8.06) was significantly higher than that of ApoA-I alone (24.35 +/- 3.70) (P<0.01). The results suggest that: (1) ApoA-I has the ability to bind with and protect against LPS; (2) LFF enhances the effect of ApoA-I; (3) ApoA-I is the major contributor for HDL anti-endotoxin function.


Subject(s)
Apolipoprotein A-I/physiology , Endotoxins/metabolism , Endotoxins/toxicity , Animals , Cell Line , Chromatography , Electrophoresis, Polyacrylamide Gel , Escherichia coli/metabolism , Humans , Lipopolysaccharides/metabolism , Lipoproteins, HDL/metabolism , Macrophages/metabolism , Mice , Microscopy, Fluorescence , Protein Binding , Tetrazolium Salts/pharmacology , Thiazoles/pharmacology , Time Factors , Ultracentrifugation
SELECTION OF CITATIONS
SEARCH DETAIL
...