Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Sci (Lond) ; 135(22): 2541-2558, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34730176

ABSTRACT

OBJECTIVE: Regulated in development and DNA damage responses-1 (REDD1) is a conserved and ubiquitous protein, which is induced in response to multiple stimuli. However, the regulation, function and clinical relevance of REDD1 in Helicobacter pylori-associated gastritis are presently unknown. APPROACH: Immunohistochemistry, real-time PCR and Western blot analyses were performed to examine the levels of REDD1 in gastric samples from H. pylori-infected patients and mice. Gastric tissues from Redd1-/- and wildtype (WT, control) mice were examined for inflammation. Gastric epithelial cells (GECs), monocytes and T cells were isolated, stimulated and/or cultured for REDD1 regulation and functional assays. RESULTS: REDD1 was increased in gastric mucosa of H. pylori-infected patients and mice. H. pylori induced GECs to express REDD1 via the phosphorylated cytotoxin associated gene A (cagA) that activated MAPKp38 pathway to mediate NF-κB directly binding to REDD1 promoter. Human gastric REDD1 increased with the severity of gastritis, and mouse REDD1 from non-marrow chimera-derived cells promoted gastric inflammation that was characterized by the influx of MHCII+ monocytes. Importantly, gastric inflammation, MHCII+ monocyte infiltration, IL-23 and IL-17A were attenuated in Redd1-/- mice. Mechanistically, REDD1 in GECs regulated CXCL1 production, which attracted MHCII+ monocytes migration by CXCL1-CXCR2 axis. Then H. pylori induced MHCII+ monocytes to secrete IL-23, which favored IL-17A-producing CD4+ cell (Th17 cell) polarization, thereby contributing to the development of H. pylori-associated gastritis. CONCLUSIONS: The present study identifies a novel regulatory network involving REDD1, which collectively exert a pro-inflammatory effect within gastric microenvironment. Efforts to inhibit this REDD1-dependent pathway may prove valuable strategies in treating of H. pylori-associated gastritis.


Subject(s)
Cytokines/metabolism , Gastric Mucosa/microbiology , Gastritis/microbiology , Helicobacter Infections/microbiology , Helicobacter pylori/pathogenicity , Th17 Cells/microbiology , Transcription Factors/metabolism , Animals , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Case-Control Studies , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Gastric Mucosa/immunology , Gastric Mucosa/metabolism , Gastritis/immunology , Gastritis/metabolism , Helicobacter Infections/complications , Helicobacter pylori/immunology , Helicobacter pylori/metabolism , Host-Pathogen Interactions , Humans , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Phenotype , Phosphorylation , Th17 Cells/immunology , Th17 Cells/metabolism , Transcription Factors/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
2.
PLoS One ; 9(2): e88461, 2014.
Article in English | MEDLINE | ID: mdl-24558391

ABSTRACT

Ehrlichia chaffeensis is an obligately intracellular bacterium that resides and multiplies within cytoplasmic vacuoles of phagocytes. The Ehrlichia-containing vacuole (ECV) does not fuse with lysosomes, an essential condition for Ehrlichia to survive inside phagocytes, but the mechanism of inhibiting the fusion of the phagosome with lysosomes is not clear. Understanding the ECV molecular composition may decipher the mechanism by which Ehrlichia inhibits phagosome-lysosome fusion. In this study, we obtained highly purified ECVs from E. chaffeensis-infected DH82 cells by sucrose density gradient centrifugation and analyzed their composition by mass spectrometry-based proteomics. The ECV composition was compared with that of phagolysosomes containing latex beads. Lysosomal proteins such as cathepsin D, cathepsin S, and lysosomal acid phosphatase were not detected in E. chaffeensis phagosome preparations. Some small GTPases, involved in membrane dynamics and phagocytic trafficking, were detected in ECVs. A notable finding was that Rab7, a late endosomal marker, was consistently detected in E. chaffeensis phagosomes by mass spectrometry. Confocal microscopy confirmed that E. chaffeensis phagosomes contained Rab7 and were acidified at approximately pH 5.2, suggesting that the E. chaffeensis vacuole was an acidified late endosomal compartment. Our results also demonstrated by mass spectrometry and immunofluorescence analysis that Ehrlichia morulae were not associated with the autophagic pathway. Ehrlichia chaffeensis did not inhibit phagosomes containing latex beads from fusing with lysosomes in infected cells. We concluded that the E. chaffeensis vacuole was a late endosome and E. chaffeensis might inhibit phagosome-lysosome fusion by modifying its vacuolar membrane composition, rather than by regulating the expression of host genes involved in trafficking.


Subject(s)
Ehrlichia chaffeensis/physiology , Macrophages/microbiology , Monocytes/microbiology , Phagosomes/metabolism , Proteome/metabolism , Acid Phosphatase/chemistry , Animals , Autophagy , Biological Transport , Cathepsin D/chemistry , Cathepsins/chemistry , Cell Line , Dogs , Endosomes/metabolism , GTP Phosphohydrolases/chemistry , Hydrogen-Ion Concentration , Lysosomes/enzymology , Mass Spectrometry , Microscopy, Confocal , Phagocytes/cytology , rab GTP-Binding Proteins/chemistry , rab7 GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...