Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater Eng ; 28(5): 503-514, 2017.
Article in English | MEDLINE | ID: mdl-28854492

ABSTRACT

BACKGROUND: As titanium (Ti) alloys are bioinert, various chemically-modified Ti surface has been developed to promote bioactivity and bone ingrowth. OBJECTIVE: In this study, various post treatments (water aging, hydrothermal, and heat treatments) were applied to NaOH-treated Ti-5Si to improve its bioactivity. METHODS: The bioactivity of surface-modified Ti-5Si was access by using the apatite formation ability of Ti-5Si surfaces soaking in a simulated body fluid (SBF). RESULTS: The results showed that the NaOH-treated surface formed a porous network structure composed of sodium titanate hydrogel, which was changed to sodium titanate after subsequent post treatments, whereas sodium titanate, anatase and rutile phases were found on the Ti-5Si surfaces after heat treatment. After immersion in SBF for 14 days, compact apatite layers were observed on the surfaces of all the Ti-5Si tested. The results of XRD and FTIR indicated that the apatite deposited on the Ti-5Si substrate with various surface modified conditions was carbonate-substituted hydroxyapatite. CONCLUSIONS: The apatite-forming ability of the surface of the Ti-5Si was excellent, even though Ti-5Si was not subjected to surface modifications. As a result, the bioactivity of Ti-5Si alloy was verified by the apatite-forming ability, making it suitable for use in orthopedic and dental implants.


Subject(s)
Alkalies , Alloys , Biocompatible Materials/chemistry , Titanium/chemistry , Apatites/chemistry , Hot Temperature , Hydrogels/chemistry , Microscopy, Electron, Scanning , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...