Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38652117

ABSTRACT

Assembly of macromolecular complexes at correct cellular sites is crucial for cell function. Nuclear pore complexes (NPCs) are large cylindrical assemblies with eightfold rotational symmetry, built through hierarchical binding of nucleoporins (Nups) forming distinct subcomplexes. Here, we uncover a role of ubiquitin-associated protein 2-like (UBAP2L) in the assembly and stability of properly organized and functional NPCs at the intact nuclear envelope (NE) in human cells. UBAP2L localizes to the nuclear pores and facilitates the formation of the Y-complex, an essential scaffold component of the NPC, and its localization to the NE. UBAP2L promotes the interaction of the Y-complex with POM121 and Nup153, the critical upstream factors in a well-defined sequential order of Nups assembly onto NE during interphase. Timely localization of the cytoplasmic Nup transport factor fragile X-related protein 1 (FXR1) to the NE and its interaction with the Y-complex are likewise dependent on UBAP2L. Thus, this NPC biogenesis mechanism integrates the cytoplasmic and the nuclear NPC assembly signals and ensures efficient nuclear transport, adaptation to nutrient stress, and cellular proliferative capacity, highlighting the importance of NPC homeostasis at the intact NE.


Subject(s)
Carrier Proteins , Nuclear Envelope , Nuclear Pore , Humans , Active Transport, Cell Nucleus , HeLa Cells , Homeostasis , Membrane Glycoproteins , Nuclear Envelope/metabolism , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Carrier Proteins/metabolism
2.
EMBO Rep ; 24(6): e56241, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37039032

ABSTRACT

PLK1 is an important regulator of mitosis whose protein levels and activity fluctuate during the cell cycle. PLK1 dynamically localizes to various mitotic structures to regulate chromosome segregation. However, the signaling pathways linking localized PLK1 activity to its protein stability remain elusive. Here, we identify the Ubiquitin-Binding Protein 2-Like (UBAP2L) that controls both the localization and the protein stability of PLK1. We demonstrate that UBAP2L is a spindle-associated protein whose depletion leads to severe mitotic defects. UBAP2L-depleted cells are characterized by increased PLK1 protein levels and abnormal PLK1 accumulation in several mitotic structures such as kinetochores, centrosomes and mitotic spindle. UBAP2L-deficient cells exit mitosis and enter the next interphase in the presence of aberrant PLK1 kinase activity. The C-terminal domain of UBAP2L mediates its function on PLK1 independently of its role in stress response signaling. Importantly, the mitotic defects of UBAP2L-depleted cells are largely rescued by chemical inhibition of PLK1. Overall, our data suggest that UBAP2L is required to fine-tune the ubiquitin-mediated PLK1 turnover during mitosis as a means to maintain genome fidelity.


Subject(s)
Carrier Proteins , Ubiquitin , Humans , Ubiquitin/metabolism , Carrier Proteins/metabolism , HeLa Cells , Cell Cycle Proteins/metabolism , Mitosis , Spindle Apparatus/metabolism , Phosphorylation
3.
Dev Biol ; 493: 103-108, 2023 01.
Article in English | MEDLINE | ID: mdl-36423673

ABSTRACT

Drosophila ovary has been one of the most mature and excellent systems for studying the in vivo regulatory mechanisms of stem cell fate determination. It has been well-known that the bone morphogenetic protein (BMP) signaling released by the niche cells promotes the maintenance of germline stem cells (GSCs) through inhibiting the transcription of the bag-of-marbles (bam) gene, which encodes a key factor for GSC differentiation. However, whether Bam is regulated at the post-translational level remains largely unknown. Here we show that the E3 ligase Cullin-2 (Cul2) is involved in modulating Bam ubiquitination, which occurs probably at multiple lysine residues of Bam's C-terminal region. Genetic evidence further supports the notion that Cul2-mediated Bam ubiquitination and turnover are essential for GSC maintenance and proper germline development. Collectively, our data not only uncovers a novel regulatory mechanism by which Bam is controlled at the post-translational level, but also provides new insights into how Cullin family protein determines the differentiation fate of early germ cells.


Subject(s)
Drosophila , Ubiquitin-Protein Ligases , Female , Animals , Cullin Proteins/genetics , Germ Cells , Cell Differentiation/genetics
4.
Commun Biol ; 5(1): 114, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136173

ABSTRACT

Ubiquitylation is one of the most common post-translational modifications (PTMs) of proteins that frequently targets substrates for proteasomal degradation. However it can also result in non-proteolytic events which play important functions in cellular processes such as intracellular signaling, membrane trafficking, DNA repair and cell cycle. Emerging evidence demonstrates that dysfunction of non-proteolytic ubiquitylation is associated with the development of multiple human diseases. In this review, we summarize the current knowledge and the latest concepts on how non-proteolytic ubiquitylation pathways are involved in cellular signaling and in disease-mediating processes. Our review, may advance our understanding of the non-degradative ubiquitylation process.


Subject(s)
DNA Repair , Protein Processing, Post-Translational , Humans , Signal Transduction , Ubiquitination
5.
Cell Rep ; 35(7): 109129, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34010649

ABSTRACT

Mitochondria are highly dynamic organelles subjected to fission and fusion events. During mitosis, mitochondrial fission ensures equal distribution of mitochondria to daughter cells. If and how this process can actively drive mitotic progression remains largely unknown. Here, we discover a pathway linking mitochondrial fission to mitotic progression in mammalian cells. The mitochondrial fission factor (MFF), the main mitochondrial receptor for the Dynamin-related protein 1 (DRP1), is directly phosphorylated by Protein Kinase D (PKD) specifically during mitosis. PKD-dependent MFF phosphorylation is required and sufficient for mitochondrial fission in mitotic but not in interphasic cells. Phosphorylation of MFF is crucial for chromosome segregation and promotes cell survival by inhibiting adaptation of the mitotic checkpoint. Thus, PKD/MFF-dependent mitochondrial fission is critical for the maintenance of genome integrity during cell division.


Subject(s)
Mitochondrial Proteins/genetics , Mitosis/physiology , Protein Kinase C/metabolism , Animals , Humans , Mice , Signal Transduction
6.
FASEB J ; 34(9): 12751-12767, 2020 09.
Article in English | MEDLINE | ID: mdl-32738097

ABSTRACT

Equal segregation of chromosomes during mitosis ensures euploidy of daughter cells. Defects in this process may result in an imbalance in the chromosomal composition and cellular transformation. Proteolytic and non-proteolytic ubiquitylation pathways ensure directionality and fidelity of mitotic progression but specific mitotic functions of deubiquitylating enzymes (DUBs) remain less studied. Here we describe the role of the DUB ubiquitin carboxyl-terminal hydrolase isozyme L3 (UCHL3) in the regulation of chromosome bi-orientation and segregation during mitosis. Downregulation or inhibition of UCHL3 leads to chromosome alignment defects during metaphase. Frequent segregation errors during anaphase are also observed upon inactivation of UCHL3. Mechanistically, UCHL3 interacts with and deubiquitylates Aurora B, the catalytic subunit of chromosome passenger complex (CPC), known to be critically involved in the regulation of chromosome alignment and segregation. UCHL3 does not regulate protein levels of Aurora B or the binding of Aurora B to other CPC subunits. Instead, UCHL3 promotes localization of Aurora B to kinetochores, suggesting its role in the error correction mechanism monitoring bi-orientation of chromosomes during metaphase. Thus, UCHL3 contributes to the regulation of faithful genome segregation and maintenance of euploidy in human cells.


Subject(s)
Chromosome Segregation , Mitosis , Ubiquitin Thiolesterase/physiology , Aurora Kinase B/physiology , HeLa Cells , Humans , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...