Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 360: 831-841, 2023 08.
Article in English | MEDLINE | ID: mdl-37481213

ABSTRACT

Intestinal mucus is a complex natural hydrogel barrier with unique physical properties that impede the absorption of various oral drugs. Both washout from the upper water layer and the physical resistance of the mucus layer particularly affect bioavailability of, especially, highly water-soluble molecules. One potential strategy for designing pharmaceutical formulations is to add absorption enhancers (AEs). However, there are few reports of AEs that work on mucus and their underlying mechanisms, leading to imprecise application. In this study, we investigated chitooligosaccharide (COS) as a safe, low-cost, and effective oral drug AE. We revealed the hydrodynamic law of interaction between COS and the intestinal mucus layer, which was associated with absorption benefiting mucus structural reconstruction. Based on this, we designed a translational strategy to improve the bioavailability of a group of soluble oral drugs by drinking COS solution before administration. Moreover, this research is expected to expand its application scenario by reducing drug dosage such as avoiding gastro-intestinal irritation and slowing veterinary antibiotic resistance.


Subject(s)
Intestinal Absorption , Water , Pharmaceutical Preparations/chemistry , Water/metabolism , Mucus/chemistry , Administration, Oral , Intestinal Mucosa/metabolism
2.
Asian J Pharm Sci ; 17(4): 596-609, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36105312

ABSTRACT

The use of nanocrystal technology to manufacture drug delivery systems intended to enhance therapeutic efficacy has attracted the attention of the pharmaceutical industry. However, the clinical application of nanocrystal drugs for injection is restricted by Ostwald ripening and the large-scale use of stabilizers such as polysorbate and lecithin, which have potential toxicity risks including hemolysis and allergies. Here, we designed an amorphous nanocrystal drug complex (IHNC), which is stabilizer-free and composed of indocyanine green (ICG) framework loading with a chemotherapeutic agent of 10-hydroxycamptothecin (HCPT). Considering the possibility of industrial manufacturing, IHNC was simply prepared with the assistance of ferric ion (III) via supramolecular assembly strategy. The theoretical result of Materials Studio simulation indicated that the prepared ICG-Fe(III) framework showed a stable spherical structure with the appropriate cavity for encapsulating the two drugs of HCPT and ICG with equal mass ratio. The IHNC was stable at physiological pH, with excellent PTT/PDT efficacy, and in vivo probing characteristics. The nanoscale size and reductive stimuli-responsiveness can be conducive to drug accumulation into the tumor site and rapid unloading of cargo. Moreover, such combination therapy showed synergistic photo/chemotherapy effect against 4T1 breast cancer and its tumor inhibition rate even up to 79.4%. These findings demonstrated that the nanocrystal drug delivery strategy could avoid the use of stabilizers and provide a new strategy for drug delivery for combination therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...