Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 413
Filter
1.
J Cancer Educ ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914893

ABSTRACT

Delays in research protocol development may be a single factor that hinders the career progression of academic faculty. Structured educational guidance during this phase proves crucial in mitigating setbacks in Institutional Review Board (IRB) approval and expediting trial implementation. To address this, the Protocol-in-a-Day (PIAD) workshop, a comprehensive 1-day event involving members from six critical facets of RO clinical trial implementation, was established, offering significant input to individual protocols. Efficacy and satisfaction of the PIAD workshop were assessed through a 5-question survey and the average time from submission to IRB initial approval. The normality of the data was analyzed using the Shapiro-Wilk Test. Nonparametric data was analyzed using a Mann-Whitney U test for significance. A total of 18 protocols that went through the PIAD workshop were activated. The mean time to IRB approval for protocols that went through PIAD was 39.8 days compared to 58.4 days for those that did not go through the PIAD workshop. Based on survey results, 100% of PIAD participants said the PIAD workshop was useful and 94% of participants stated that the PIAD workshop improved the overall quality of their protocol. Participant surveys further highlighted substantial improvements in trial quality, language, and statistical design and revealed that all participants found the workshop helpful. Therefore, both junior and senior faculty benefitted from this educational program during protocol development, as both groups demonstrated shorter times to IRB approval than non-participants. This acceleration not only fosters efficient trial implementation but also supports academic faculty in their career development.

2.
Blood Adv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830141

ABSTRACT

Exposure to cancer therapies is associated with an increased risk of clonal hematopoiesis (CH). The objective of our study was to investigate the genesis and evolution of CH following cancer therapy. In this prospective study, we undertook error-corrected duplex DNA sequencing in blood samples collected prior to and at two timepoints following chemoradiation in patients with esophageal or lung cancer recruited from 2013-2018. We applied a customized workflow to identify the earliest changes in CH mutation count and clone size and determine their association with clinical outcomes. Our study included 29 patients (87 samples). Their median age was 67 years, 76% (n = 22) were male; the median follow-up period was 3.9 years. The most mutated genes were DNMT3A, TET2, TP53, and ASXL1. We observed a two-fold increase in the number of mutations from before to after treatment in TP53, which differed from all other genes examined (P < .001). Among mutations detected before and after treatment, we observed an increased clone size in 38% and a decreased clone size in 5% of TP53 mutations (odds ratio = 3.7; 95% CI = 1.75-7.84; P < .001). Changes in mutation count and clone size were not observed in other genes. Individuals with an increase in the number of TP53 mutations following chemoradiation experienced shorter overall survival (hazard ratio = 7.07; 95% CI = 1.50-33.46; P = .014). In summary, we found an increase in the number and size of TP53 CH clones following chemoradiation that were associated with clinical outcomes.

3.
Int J Part Ther ; 11: 100009, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38757075

ABSTRACT

Purpose: The effectiveness of intensity-modulated proton therapy (IMPT) for esophageal cancer treated with definitive concurrent chemoradiation therapy remains inadequately explored. We investigated long-term outcomes and toxicity experienced by patients who received IMPT as part of definitive esophageal cancer treatment. Patients and Methods: We retrospectively identified and analyzed 34 patients with locally advanced esophageal cancer who received IMPT with concurrent chemotherapy as a definitive treatment regimen at The University of Texas MD Anderson Cancer Center from 2011 to 2021. The median IMPT dose was 50.4 GyRBE in 28 fractions; concurrent chemotherapy consisted of fluorouracil and/or taxane and/or platinum. Survival outcomes were determined by the Kaplan-Meier method, and toxicity was scored according to the Common Terminology Criteria for Adverse Events version 4.0. Results: The median age of all patients was 71.5 years. Most patients had stage III (cT3 cM0) adenocarcinoma of the lower esophagus. At a median follow-up time of 39 months, the 5-year overall survival rate was 41.1%; progression-free survival, 34.6%; local regional recurrence-free survival, 78.1%; and distant metastasis-free survival, 65.0%. Common acute chemoradiation therapy-related toxicities included hematologic toxicity, esophagitis (and late-onset), fatigue, weight loss, and nausea (and late-onset); grade 3 toxicity rates were 26.0% for hematologic, 18.0% for esophagitis and 9.0% for nausea. No patient had grade ≥3 wt loss or radiation pneumonitis, and no patients had pulmonary fibrosis or esophageal fistula. No grade ≥4 events were observed except for hematologic toxicity (lymphopenia) in 2 patients. Conclusion: Long-term survival and toxicity were excellent after IMPT for locally advanced esophageal cancer treated definitively with concurrent chemoradiation therapy. When available, IMPT should be offered to such patients to minimize treatment-related cardiopulmonary toxicity without sacrificing outcomes.

4.
Int J Part Ther ; 11: 100012, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38757082

ABSTRACT

Purpose: Evidence suggests that proton-beam therapy (PBT) results in less toxicity and postoperative complications compared to photon-based radiotherapy in patients who receive chemoradiotherapy followed by esophagectomy for cancer. Ninety-day mortality (90DM) is an important measure of the postoperative (nononcologic) outcome as proxy of quality-of-care. We hypothesize that PBT could reduce 90DM compared to photon-based radiotherapy. Materials and Methods: From a single-center retrospective database patients treated with chemoradiotherapy before esophagectomy for cancer were selected (1998-2022). Univariable logistic regression was used to study the association of radiotherapy modality with 90DM. Three separate methods were applied to adjust for confounding bias, including multivariable logistic regression, propensity score matching, and inverse probability of treatment weighting. Stratified analysis for the age threshold that maximized the difference in 90DM (ie, ≥67 vs <67 years) was performed. Results: A total of 894 eligible patients were included and 90DM was 5/202 (2.5%) in the PBT versus 29/692 (4.2%) in the photon-based radiotherapy group (P = .262). After adjustment for age and tumor location, PBT versus photon-based radiotherapy was not significantly associated with 90DM (P = .491). The 90DM was not significantly different for PBT versus photon-based radiotherapy in the propensity score matching (P = .379) and inverse probability of treatment weighting cohort (P = .426). The stratified analysis revealed that in patients aged ≥67 years, PBT was associated with decreased 90DM (1.3% vs 8.8%; P = .026). Higher age significantly increased 90DM risk within the photon-based radiotherapy (8.8% vs 2.7%; P = .001), but not within the PBT group (1.3% vs 3.2%; P = .651). Conclusion: No statistically significant difference was observed in postoperative 90DM after esophagectomy for cancer between PBT and photon-based neoadjuvant chemoradiotherapy. However, among older patients a signal was observed that PBT may reduce 90DM risk.

5.
Res Sq ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38352564

ABSTRACT

Background Radiation-induced lung injury (RILI) via inflammation is a common adverse effect of thoracic radiation that negatively impacts patient quality of life and survival. Compound kushen injection (CKI), a botanical drug treatment, was examined for its ability to reduce RILI, and inflammatory responses and improve survival in mice exposed total lung irradiation (TLI). CKI's specific mechanisms of action were also evaluated. Methods C3H mice underwent TLI and were treated with CKI (2, 4, or 8 mL/kg) intraperitoneally once a day for 8 weeks. The effects of CKI on survival were estimated by Kaplan-Meier survival analysis and compared by log-rank test. RILI damage was evaluated by histopathology and micro-computed tomography (CT). Inflammatory cytokines and cyclooxygenase metabolites were examined by IHC staining, western blot, and ELISA. Results Pre-irradiation treatment with 4 or 8 mL/kg CKI starting 2 weeks before TLI or concurrent treatment with 8 mL/kg CKI were associated with a significantly longer survival compared with TLI vehicle-treated group ( P < 0.05). Micro-CT images evaluations showed that concurrent treatment with 8 mL/kg CKI was associated with significantly lower incidence of RILI ( P < 0.05). Histological evaluations revealed that concurrent TLI treatment of CKI (4 and 8 mL/kg) significantly reduced lung inflammation (p < 0.05). Mechanistic investigation showed that at 72 hours after radiation, TLI plus vehicle mice had significantly elevated serum IL6, IL17A, and TGF-ß levels compared with non-irradiated, age-matched normal mice; in contrast, levels of these cytokines in mice that received TLI plus CKI treatment were lower than those in the TLI plus vehicle-treated mice ( P < 0.05) and similar to the nonirradiated mice. IHC staining showed that the CKI treatment led to a reduction of TGF-ß positive cells in the lung tissues of TLI mice (P < 0.01). The concurrent CKI with TLI treatment group had a significant reduction in COX-2 activity and COX-2 metabolites compared with the TLI vehicle-treated group ( P < 0.05). Conclusions These data suggest that CKI treatment was associated with reduced radiation-induced inflammation in lung tissues, reduced RILI, and improved survival. Further investigation of CKI in human clinical trials as a potential radioprotector against RILI to improve patients' quality of life and survival is warranted.

6.
Radiother Oncol ; 193: 110121, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38311031

ABSTRACT

INTRODUCTION: Adjuvant immunotherapy (IO) following concurrent chemotherapy and photon radiation therapy confers an overall survival (OS) benefit for patients with inoperable locally advanced non-small cell lung carcinoma (LA-NSCLC); however, outcomes of adjuvant IO after concurrent chemotherapy with proton beam therapy (CPBT) are unknown. We investigated OS and toxicity after CPBT with adjuvant IO versus CPBT alone for inoperable LA-NSCLC. MATERIALS AND METHODS: We analyzed 354 patients with LA-NSCLC who were prospectively treated with CPBT with or without adjuvant IO from 2009 to 2021. Optimal variable ratio propensity score matching (PSM) matched CPBT with CPBT + IO patients. Survival was estimated with the Kaplan-Meier method and compared with log-rank tests. Multivariable Cox proportional hazards regression evaluated the effect of IO on disease outcomes. RESULTS: Median age was 70 years; 71 (20%) received CPBT + IO and 283 (80%) received CPBT only. After PSM, 71 CPBT patients were matched with 71 CPBT + IO patients. Three-year survival rates for CPBT + IO vs CPBT were: OS 67% vs 30% (P < 0.001) and PFS 59% vs 35% (P = 0.017). Three-year LRFS (P = 0.137) and DMFS (P = 0.086) did not differ. Receipt of adjuvant IO was a strong predictor of OS (HR 0.40, P = 0.001) and PFS (HR 0.56, P = 0.030), but not LRFS (HR 0.61, P = 0.121) or DMFS (HR 0.61, P = 0.136). There was an increased incidence of grade ≥3 esophagitis in the CPBT-only group (6% CPBT + IO vs 17% CPBT, P = 0.037). CONCLUSION: This study, one of the first to investigate CPBT followed by IO for inoperable LA-NSCLC, showed that IO conferred survival benefits with no increased rates of toxicity.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Proton Therapy , Humans , Aged , Carcinoma, Non-Small-Cell Lung/pathology , Proton Therapy/adverse effects , Chemotherapy, Adjuvant , Lung Neoplasms/pathology , Immunotherapy/adverse effects , Retrospective Studies
7.
Phys Med Biol ; 69(7)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38412530

ABSTRACT

Objective.This study addresses radiation-induced toxicity (RIT) challenges in radiotherapy (RT) by developing a personalized treatment planning framework. It leverages patient-specific data and dosimetric information to create an optimization model that limits adverse side effects using constraints learned from historical data.Approach.The study uses the optimization with constraint learning (OCL) framework, incorporating patient-specific factors into the optimization process. It consists of three steps: optimizing the baseline treatment plan using population-wide dosimetric constraints; training a machine learning (ML) model to estimate the patient's RIT for the baseline plan; and adapting the treatment plan to minimize RIT using ML-learned patient-specific constraints. Various predictive models, including classification trees, ensembles of trees, and neural networks, are applied to predict the probability of grade 2+ radiation pneumonitis (RP2+) for non-small cell lung (NSCLC) cancer patients three months post-RT. The methodology is assessed with four high RP2+ risk NSCLC patients, with the goal of optimizing the dose distribution to constrain the RP2+ outcome below a pre-specified threshold. Conventional and OCL-enhanced plans are compared based on dosimetric parameters and predicted RP2+ risk. Sensitivity analysis on risk thresholds and data uncertainty is performed using a toy NSCLC case.Main results.Experiments show the methodology's capacity to directly incorporate all predictive models into RT treatment planning. In the four patients studied, mean lung dose and V20 were reduced by an average of 1.78 Gy and 3.66%, resulting in an average RP2+ risk reduction from 95% to 42%. Notably, this reduction maintains tumor coverage, although in two cases, sparing the lung slightly increased spinal cord max-dose (0.23 and 0.79 Gy).Significance.By integrating patient-specific information into learned constraints, the study significantly reduces adverse side effects like RP2+ without compromising target coverage. This unified framework bridges the gap between predicting toxicities and optimizing treatment plans in personalized RT decision-making.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiation Injuries , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Carcinoma, Non-Small-Cell Lung/pathology , Lung/radiation effects , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Machine Learning , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
8.
JCO Oncol Pract ; 20(5): 732-738, 2024 May.
Article in English | MEDLINE | ID: mdl-38330252

ABSTRACT

PURPOSE: Clinical efficiency is a key component of value-based health care. Our objective here was to identify workflow inefficiencies by using time-driven activity-based costing (TDABC) and evaluate the implementation of a new clinical workflow in high-volume outpatient radiation oncology clinics. METHODS: Our quality improvement study was conducted with the Departments of GI, Genitourinary (GU), and Thoracic Radiation Oncology at a large academic cancer center and four community network sites. TDABC was used to create process maps and optimize workflow for outpatient consults. Patient encounter metrics were captured with a real-time status function in the electronic medical record. Time metrics were compared using Mann-Whitney U tests. RESULTS: Individual patient encounter data for 1,328 consults before the intervention and 1,234 afterward across all sections were included. The median overall cycle time was reduced by 21% in GI (19 minutes), 18% in GU (16 minutes), and 12% at the community sites (9 minutes). The median financial savings per consult were $52 in US dollars (USD) for the GI, $33 USD for GU, $30 USD for thoracic, and $42 USD for the community sites. Patient satisfaction surveys (from 127 of 228 patients) showed that 99% of patients reported that their providers spent adequate time with them and 91% reported being seen by a care provider in a timely manner. CONCLUSION: TDABC can effectively identify opportunities to improve clinical efficiency. Implementing workflow changes on the basis of our findings led to substantial reductions in overall encounter cycle times across several departments, as well as high patient satisfaction and significant financial savings.


Subject(s)
Outpatients , Radiation Oncology , Workflow , Humans , Radiation Oncology/economics , Radiation Oncology/methods , Radiation Oncology/standards , Male , Female , Referral and Consultation , Middle Aged
9.
Int J Radiat Oncol Biol Phys ; 118(2): 368-377, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37652304

ABSTRACT

PURPOSE: Lymphocytes play an important role in antitumor immunity; however, they are also especially vulnerable to depletion during chemoradiation therapy (CRT). The purpose of this study was to compare the incidence of grade 4 lymphopenia (G4L) between proton beam therapy (PBT) and intensity modulated photon radiation therapy (IMRT) in patients with esophageal cancer treated with CRT in a completed randomized trial and to ascertain patient heterogeneity to G4L risk based on treatment and established prognostic factors. METHODS AND MATERIALS: Between April 2012 and March 2019, a single-institution, open-label, nonblinded, phase 2 randomized trial (NCT01512589) was conducted at the University of Texas MD Anderson Cancer Center. Patients were randomly assigned to IMRT or PBT, either definitively or preoperatively. This secondary analysis of the randomized trial was G4L during concurrent CRT according to Common Terminology Criteria for Adverse Events version 5.0. RESULTS: Among 105 patients evaluable for analysis, 44 patients (42%) experienced G4L at a median of 28 days after the start date of concurrent CRT. Induction chemotherapy (P = .003), baseline absolute lymphocyte count (P < .001), radiation therapy modality (P = .002), and planning treatment volume (P = .033) were found to be significantly associated with G4L. Multivariate classification analysis partitioned patients into 5 subgroups for whom the incidence of G4L was observed in 0%, 14%, 35%, 70%, and 100% of patients. The benefit of PBT over IMRT was most pronounced in patients with an intermediate baseline absolute lymphocyte count and large planning treatment volume (P = .011). CONCLUSIONS: This is the first prospective evidence that limiting dose scatter by PBT significantly reduced the incidence of G4L, especially in the intermediate-risk patients. The implication of this immune-sparing effect of PBT, especially in the context of standard adjuvant immunotherapy, needs further examination in the current phase 3 randomized trials.


Subject(s)
Esophageal Neoplasms , Lymphopenia , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Proton Therapy/adverse effects , Proton Therapy/methods , Prospective Studies , Esophageal Neoplasms/therapy , Esophageal Neoplasms/pathology , Lymphopenia/etiology
10.
Radiother Oncol ; 190: 110013, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972734

ABSTRACT

PURPOSE: Radiation pneumonitis (RP) remains a major complication in non-small cell lung cancer (NSCLC) patients undergoing radiochemotherapy (RCHT). Traditionally, the mean lung dose (MLD) and the volume of the total lung receiving at least 20 Gy (V20Gy) are used to predict RP in patients treated with normo-fractionated photon therapy. However, other models, including the actual dose-distribution in the lungs using the effective α/ß model or a combination of radiation doses to the lungs and heart, have been proposed for predicting RP. Moreover, the models established for photons may not hold for patients treated with passively-scattered proton therapy (PSPT). Therefore, we here tested and validated novel predictive parameters for RP in NSCLC patient treated with PSPT. METHODS: Data on the occurrence of RP, structure files and dose-volume histogram parameters for lungs and heart of 96 NSCLC patients, treated with PSPT and concurrent chemotherapy, was retrospectively retrieved from prospective clinical studies of two international centers. Data was randomly split into a training set (64 patients) and a validation set (32 patients). Statistical analyses were performed using binomial logistic regression. RESULTS: The biologically effective dose (BED) of the'lungs - GTV' significantly predicted RP ≥ grade 2 in the training-set using both a univariate model (p = 0.019, AUCtrain = 0.72) and a multivariate model in combination with the effective α/ß parameter of the heart (pBED = 0.006, [Formula: see text] = 0.043, AUCtrain = 0.74). However, these results did not hold in the validation-set (AUCval = 0.52 andAUCval = 0.50, respectively). Moreover, these models were found to neither outperform a model built with the MLD (p = 0.015, AUCtrain = 0.73, AUCval = 0.51), nor a multivariate model additionally including the V20Gy of the heart (pMLD = 0.039, pV20Gy,heart = 0.58, AUCtrain = 0.74, AUCval = 0.53). CONCLUSION: Using the effective α/ß parameter of the lungs and heart we achieved similar performance to commonly used models built for photon therapy, such as MLD, in predicting RP ≥ grade 2. Therefore, prediction models developed for photon RCHT still hold for patients treated with PSPT.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Proton Therapy , Radiation Pneumonitis , Humans , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Radiation Pneumonitis/etiology , Proton Therapy/adverse effects , Proton Therapy/methods , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Retrospective Studies , Prospective Studies , Lung , Radiotherapy Dosage
11.
Int J Surg ; 110(2): 956-964, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37995095

ABSTRACT

BACKGROUND: There is no standard management for small cell esophageal carcinoma (SCEC). The purpose of this multicenter, retrospective study (ChiSCER) was to investigate the treatment, outcomes, and risk factors impacting survival endpoints in patients with limited-stage SCEC (LS-SCEC). MATERIALS AND METHODS: Consecutive patients with LS-SCEC from 14 institutions between 2000 and 2020 in China were enrolled. Survival curves were constructed using the Kaplan-Meier method and compared using a log-rank test. Univariate and multivariate Cox regression models and propensity score matching (PSM) analysis were adopted in the prognostic analysis. Results were reported as hazard ratio (HR), 95% confidence interval (CI), and P value. Statistical significance was set as P value <0.05 in a two-tailed test. RESULTS: Among 458 LS-SCEC patients, the median age was 63 [interquartile range (IQR), 57-68] years, and 318 (69%) were males. Eighty-four (18%), 167 (36%), and 207 (45%) patients received chemotherapy (CT) alone, CT plus definitive radiotherapy (CT+RT), and CT plus radical surgery (CT+S), respectively. With a median follow-up time of 58.7 (95% CI 48.9-68.6) months, the median overall survival (OS) and 3-year OS rate for all patients 24.3 (95% CI 21.6-27) months and 37.3% (95% CI 32.8-42.5%), respectively. Multivariate analysis indicated that treatment modes, Karnofsky performance status (KPS), TNM stage, and CT cycle were independent prognostic factors for OS ( P <0.05). Compared with CT alone, patients treated with CT+RT (HR 0.57, 95% CI 0.41-0.8, P =0.001) or CT+S (HR 0.59, 95% CI 0.42-0.82, P =0.002) had an improved OS, with no significant survival differences between CT+S and CT+RT groups after multivariate and PSM analyses ( P >0.05). Subgroup analysis indicated that compared with CT+RT, patients with tumor location at lower 1/3 (HR 0.59, 95% CI 0.37-0.93, P =0.03) or tumor length >5 cm (HR 0.52, 95% CI 0.3-0.9, P =0.02) could obtain significant OS benefit from CT+S. Patients with tumor location at middle 1/3 (HR 1.55, 95% CI 1.03-2.36, P =0.04) or tumor length ≤5 cm (HR 1.49, 95% CI 1.02-2.17, P =0.04) favored CT+RT. Distant metastasis accounted for 73.7% of all treatment failures after multidisciplinary treatments. CONCLUSION: Surgery and RT were equally effective local therapies for patients with LS-SCEC. The personalized decision of local therapy should be made after comprehensive considerations on tumor location, length, comorbidities, and organ preservation.


Subject(s)
Carcinoma, Small Cell , Esophageal Neoplasms , Female , Humans , Male , Middle Aged , Carcinoma, Small Cell/pathology , Cohort Studies , Esophageal Neoplasms/radiotherapy , Esophageal Neoplasms/surgery , Esophageal Neoplasms/drug therapy , Prognosis , Retrospective Studies
12.
Int J Radiat Oncol Biol Phys ; 118(1): 231-241, 2024 Jan 01.
Article | MEDLINE | ID: mdl-37552151

ABSTRACT

PURPOSE: The aim of this study was to investigate the dosimetric and clinical effects of 4-dimensional computed tomography (4DCT)-based longitudinal dose accumulation in patients with locally advanced non-small cell lung cancer treated with standard-fractionated intensity-modulated radiation therapy (IMRT). METHODS AND MATERIALS: Sixty-seven patients were retrospectively selected from a randomized clinical trial. Their original IMRT plan, planning and verification 4DCTs, and ∼4-month posttreatment follow-up CTs were imported into a commercial treatment planning system. Two deformable image registration algorithms were implemented for dose accumulation, and their accuracies were assessed. The planned and accumulated doses computed using average-intensity images or phase images were compared. At the organ level, mean lung dose and normal-tissue complication probability (NTCP) for grade ≥2 radiation pneumonitis were compared. At the region level, mean dose in lung subsections and the volumetric overlap between isodose intervals were compared. At the voxel level, the accuracy in estimating the delivered dose was compared by evaluating the fit of a dose versus radiographic image density change (IDC) model. The dose-IDC model fit was also compared for subcohorts based on the magnitude of NTCP difference (|ΔNTCP|) between planned and accumulated doses. RESULTS: Deformable image registration accuracy was quantified, and the uncertainty was considered for the voxel-level analysis. Compared with planned doses, accumulated doses on average resulted in <1-Gy lung dose increase and <2% NTCP increase (up to 8.2 Gy and 18.8% for a patient, respectively). Volumetric overlap of isodose intervals between the planned and accumulated dose distributions ranged from 0.01 to 0.93. Voxel-level dose-IDC models demonstrated a fit improvement from planned dose to accumulated dose (pseudo-R2 increased 0.0023) and a further improvement for patients with ≥2% |ΔNTCP| versus for patients with <2% |ΔNTCP|. CONCLUSIONS: With a relatively large cohort, robust image registrations, multilevel metric comparisons, and radiographic image-based evidence, we demonstrated that dose accumulation more accurately represents the delivered dose and can be especially beneficial for patients with greater longitudinal response.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Retrospective Studies , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Four-Dimensional Computed Tomography/methods
13.
Radiother Oncol ; 191: 110061, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38122850

ABSTRACT

PURPOSE: Accurate and comprehensive segmentation of cardiac substructures is crucial for minimizing the risk of radiation-induced heart disease in lung cancer radiotherapy. We sought to develop and validate deep learning-based auto-segmentation models for cardiac substructures. MATERIALS AND METHODS: Nineteen cardiac substructures (whole heart, 4 heart chambers, 6 great vessels, 4 valves, and 4 coronary arteries) in 100 patients treated for non-small cell lung cancer were manually delineated by two radiation oncologists. The valves and coronary arteries were delineated as planning risk volumes. An nnU-Net auto-segmentation model was trained, validated, and tested on this dataset with a split ratio of 75:5:20. The auto-segmented contours were evaluated by comparing them with manually drawn contours in terms of Dice similarity coefficient (DSC) and dose metrics extracted from clinical plans. An independent dataset of 42 patients was used for subjective evaluation of the auto-segmentation model by 4 physicians. RESULTS: The average DSCs were 0.95 (+/- 0.01) for the whole heart, 0.91 (+/- 0.02) for 4 chambers, 0.86 (+/- 0.09) for 6 great vessels, 0.81 (+/- 0.09) for 4 valves, and 0.60 (+/- 0.14) for 4 coronary arteries. The average absolute errors in mean/max doses to all substructures were 1.04 (+/- 1.99) Gy and 2.20 (+/- 4.37) Gy. The subjective evaluation revealed that 94% of the auto-segmented contours were clinically acceptable. CONCLUSION: We demonstrated the effectiveness of our nnU-Net model for delineating cardiac substructures, including coronary arteries. Our results indicate that this model has promise for studies regarding radiation dose to cardiac substructures.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Deep Learning , Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Heart/diagnostic imaging , Organs at Risk
14.
Anticancer Res ; 44(1): 133-137, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159979

ABSTRACT

BACKGROUND/AIM: Non-small cell lung cancer (NSCLC) is increasingly detected in early stages and there is interest in improving outcomes with stereotactic body radiotherapy (SBRT). As metformin affects NSCLC signaling pathways, it might alter the metabolism of NSCLC treated with SBRT. This study investigated the long-term outcomes of a phase II clinical trial evaluating metformin in conjunction with SBRT for early-stage NSCLC. PATIENTS AND METHODS: The trial evaluated patients with American Joint Commission on Cancer (AJCC) 7th edition Stage I-II, cT1-T2N0M0 NSCLC who were randomized 6:1 to receive metformin versus placebo in conjunction with SBRT. The outcomes analyzed included local failure (LF), progression-free survival (PFS), overall survival (OS), and Common Terminology Criteria for Adverse Events (CTCAE) version 4 toxicities. RESULTS: There were 14 patients randomized to the metformin arm and one to the placebo. Median follow-up was four years. In the metformin group, the median PFS was 4.65 years [95% confidence interval (CI)=0.31-5.93] and median survival was 4.97 years (95%CI=3.05-4.61). Five year PFS was 27.8% (95%CI=5.3-57.3%) and OS was 46.0% (95%CI=16.0-71.9%). The one patient randomized to placebo was alive and without progression at five years. There were no LFs in the primary SBRT treatment volumes and no CTCAE version 4 Grade ≥3 adverse events. CONCLUSION: Outcomes of SBRT and metformin for early-stage NSCLC were similar to historic controls. These findings along with the results of the NRG-LU001 and OCOG randomized trials do not support the therapeutic use of metformin for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Metformin , Radiosurgery , Small Cell Lung Carcinoma , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/etiology , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Lung Neoplasms/etiology , Radiosurgery/adverse effects , Radiosurgery/methods , Metformin/therapeutic use , Prospective Studies , Small Cell Lung Carcinoma/etiology , Retrospective Studies
15.
J Radiosurg SBRT ; 9(1): 75-82, 2023.
Article in English | MEDLINE | ID: mdl-38029015

ABSTRACT

Our randomized clinical study comparing stereotactic body radiotherapy (SBRT) and stereotactic body proton therapy (SBPT) for early stage non-small cell lung cancer (NSCLC) was closed prematurely owing to poor enrollment, largely because of lack of volumetric imaging and difficulty in obtaining insurance coverage for the SBPT group. In this article, we describe technology improvements in our new proton therapy center, particularly in image guidance with cone beam CT (CBCT) and CT on rail (CTOR), as well as motion management with real-time gated proton therapy (RGPT) and optical surface imaging. In addition, we have a treatment planning system that provides better treatment plan optimization and more accurate dose calculation. We expect to re-start the SBPT program, including for early stage NSCLC as well as for other disease sites soon after starting patient treatment at our new proton therapy center.

17.
Lancet ; 402(10405): 871-881, 2023 09 09.
Article in English | MEDLINE | ID: mdl-37478883

ABSTRACT

BACKGROUND: Stereotactic ablative radiotherapy (SABR) is the standard treatment for medically inoperable early-stage non-small-cell lung cancer (NSCLC), but regional or distant relapses, or both, are common. Immunotherapy reduces recurrence and improves survival in people with stage III NSCLC after chemoradiotherapy, but its utility in stage I and II cases is unclear. We therefore conducted a randomised phase 2 trial of SABR alone compared with SABR with immunotherapy (I-SABR) for people with early-stage NSCLC. METHODS: We did an open-label, randomised, phase 2 trial comparing SABR to I-SABR, conducted at three different hospitals in TX, USA. People aged 18 years or older with histologically proven treatment-naive stage IA-IB (tumour size ≤4 cm, N0M0), stage IIA (tumour size ≤5 cm, N0M0), or stage IIB (tumour size >5 cm and ≤7 cm, N0M0) as per the American Joint Committee on Cancer version 8 staging system or isolated parenchymal recurrences (tumour size ≤7 cm) NSCLC (TanyNanyM0 before definitive surgery or chemoradiotherapy) were included in this trial. Participants were randomly assigned (1:1; using the Pocock & Simon method) to receive SABR with or without four cycles of nivolumab (480 mg, once every 4 weeks, with the first dose on the same day as, or within 36 h after, the first SABR fraction). This trial was unmasked. The primary endpoint was 4-year event-free survival (local, regional, or distant recurrence; second primary lung cancer; or death). Analyses were both intention to treat (ITT) and per protocol. This trial is registered with ClinicalTrials.gov (NCT03110978) and is closed to enrolment. FINDINGS: From June 30, 2017, to March 22, 2022, 156 participants were randomly assigned, and 141 participants received assigned therapy. At a median 33 months' follow-up, I-SABR significantly improved 4-year event-free survival from 53% (95% CI 42-67%) with SABR to 77% (66-91%; per-protocol population, hazard ratio [HR] 0·38; 95% CI 0·19-0·75; p=0·0056; ITT population, HR 0·42; 95% CI 0·22-0·80; p=0·0080). There were no grade 3 or higher adverse events associated with SABR. In the I-SABR group, ten participants (15%) had grade 3 immunologial adverse events related to nivolumab; none had grade 3 pneumonitis or grade 4 or higher toxicity. INTERPRETATION: Compared with SABR alone, I-SABR significantly improved event-free survival at 4 years in people with early-stage treatment-naive or lung parenchymal recurrent node-negative NSCLC, with tolerable toxicity. I-SABR could be a treatment option in these participants, but further confirmation from a number of currently accruing phase 3 trials is required. FUNDING: Bristol-Myers Squibb and MD Anderson Cancer Center Alliance, National Cancer Institute at the National Institutes of Health through Cancer Center Core Support Grant and Clinical and Translational Science Award to The University of Texas MD Anderson Cancer Center.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Chronic Disease , Immunotherapy , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Neoplasm Staging , Nivolumab/adverse effects , Recurrence , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/radiotherapy , Treatment Outcome , Adolescent , Adult
18.
Int J Radiat Oncol Biol Phys ; 117(5): 1287-1296, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37406826

ABSTRACT

PURPOSE: Dosimetric predictors of toxicity in patients treated with definitive chemoradiation for locally advanced non-small cell lung cancer are often identified through trial and error. This study used machine learning (ML) and explainable artificial intelligence to empirically characterize dosimetric predictors of toxicity in patients treated as part of a prospective clinical trial. METHODS AND MATERIALS: A secondary analysis of the Radiation Therapy Oncology Group (RTOG) 0617 trial was performed. Multiple ML models were trained to predict grade ≥3 pulmonary, cardiac, and esophageal toxicities using clinical and dosimetric features. Model performance was evaluated using the area under the curve (AUC). The best performing model for each toxicity was explained using the Shapley Additive Explanation (SHAP) framework; SHAP values were used to identify relevant dosimetric thresholds and were converted to odds ratios (ORs) with confidence intervals (CIs) generated using bootstrapping to obtain quantitative measures of risk. Thresholds were validated using logistic regression. RESULTS: The best-performing models for pulmonary, cardiac, and esophageal toxicities, outperforming logistic regression, were extreme gradient boosting (AUC, 0.739), random forest (AUC, 0.706), and naive Bayes (AUC, 0.721), respectively. For pulmonary toxicity, thresholds of a mean dose >18 Gy (OR, 2.467; 95% CI, 1.049-5.800; P = .038) and lung volume receiving ≥20 Gy (V20) > 37% (OR, 2.722; 95% CI, 1.034-7.163; P = .043) were identified. For esophageal toxicity, thresholds of a mean dose >34 Gy (OR, 4.006; 95% CI, 2.183-7.354; P < .001) and V20 > 37% (OR, 3.725; 95% CI, 1.308-10.603; P = .014) were identified. No significant thresholds were identified for cardiac toxicity. CONCLUSIONS: In this data set, ML approaches validated known dosimetric thresholds and outperformed logistic regression at predicting toxicity. Furthermore, using explainable artificial intelligence, clinically useful dosimetric thresholds might be identified and subsequently externally validated.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Artificial Intelligence , Bayes Theorem , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Prospective Studies , Radiotherapy Dosage
19.
Pract Radiat Oncol ; 13(5): 413-428, 2023.
Article in English | MEDLINE | ID: mdl-37075838

ABSTRACT

PURPOSE: For patients with lung cancer, it is critical to provide evidence-based radiation therapy to ensure high-quality care. The US Department of Veterans Affairs (VA) National Radiation Oncology Program partnered with the American Society for Radiation Oncology (ASTRO) as part of the VA Radiation Oncology Quality Surveillance to develop lung cancer quality metrics and assess quality of care as a pilot program in 2016. This article presents recently updated consensus quality measures and dose-volume histogram (DVH) constraints. METHODS AND MATERIALS: A series of measures and performance standards were reviewed and developed by a Blue-Ribbon Panel of lung cancer experts in conjunction with ASTRO in 2022. As part of this initiative, quality, surveillance, and aspirational metrics were developed for (1) initial consultation and workup; (2) simulation, treatment planning, and treatment delivery; and (3) follow-up. The DVH metrics for target and organ-at-risk treatment planning dose constraints were also reviewed and defined. RESULTS: Altogether, a total of 19 lung cancer quality metrics were developed. There were 121 DVH constraints developed for various fractionation regimens, including ultrahypofractionated (1, 3, 4, or 5 fractions), hypofractionated (10 and 15 fractionations), and conventional fractionation (30-35 fractions). CONCLUSIONS: The devised measures will be implemented for quality surveillance for veterans both inside and outside of the VA system and will provide a resource for lung cancer-specific quality metrics. The recommended DVH constraints serve as a unique, comprehensive resource for evidence- and expert consensus-based constraints across multiple fractionation schemas.


Subject(s)
Lung Neoplasms , Radiation Oncology , Veterans , Humans , United States , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Radiation Oncology/methods , Consensus , Quality Indicators, Health Care
20.
Int J Radiat Oncol Biol Phys ; 116(5): 1091-1099, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36889516

ABSTRACT

PURPOSE: Radiation pneumonitis (RP) is the most common dose-limiting toxicity for thoracic radiation therapy. Nintedanib is used for the treatment of idiopathic pulmonary fibrosis, which shares pathophysiological pathways with the subacute phase of RP. Our goal was to investigate the efficacy and safety of nintedanib added to a prednisone taper compared with a prednisone taper alone in reducing pulmonary exacerbations in patients with grade 2 or higher (G2+) RP. METHODS AND MATERIALS: In this phase 2, randomized, double-blinded, placebo-controlled trial, patients with newly diagnosed G2+ RP were randomized 1:1 to nintedanib or placebo in addition to a standard 8-week prednisone taper. The primary endpoint was freedom from pulmonary exacerbations at 1 year. Secondary endpoints included patient-reported outcomes and pulmonary function tests. Kaplan-Meier analysis was used to estimate the probability of freedom from pulmonary exacerbations. The study was closed early due to slow accrual. RESULTS: Thirty-four patients were enrolled between October 2015 and February 2020. Of 30 evaluable patients, 18 were randomized to the experimental Arm A (nintedanib + prednisone taper) and 12 to the control Arm B (placebo + prednisone taper). Freedom from exacerbation at 1 year was 72% (confidence interval, 54%-96%) in Arm A and 40% (confidence interval, 20%-82%) in Arm B (1-sided, P = .037). In Arm A, there were 16 G2+ adverse events possibly or probably related to treatment compared with 5 in the placebo arm. There were 3 deaths during the study period in Arm A due to cardiac failure, progressive respiratory failure, and pulmonary embolism. CONCLUSIONS: There was an improvement in pulmonary exacerbations by the addition of nintedanib to a prednisone taper. Further investigation is warranted for the use of nintedanib for the treatment of RP.


Subject(s)
Protein Kinase Inhibitors , Radiation Pneumonitis , Humans , Protein Kinase Inhibitors/therapeutic use , Radiation Pneumonitis/etiology , Prednisone/adverse effects , Disease Progression , Double-Blind Method
SELECTION OF CITATIONS
SEARCH DETAIL
...