Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 10(2): 396-409, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-34897300

ABSTRACT

Topographical cues are known to influence cell organization both in native tissues and in vitro. In the trachea, the matrix beneath the epithelial lining is composed of collagen fibres that run along the long axis of the airway. Previous studies have shown that grooved topography can induce morphological and cytoskeletal alignment in epithelial cell lines. In the present work we assessed the impact of substrate topography on the organization of primary human tracheal epithelial cells (HTECs) and human induced pluripotent stem cell (hiPSC)-derived airway progenitors and the resulting alignment of cilia after maturation of the airway cells under Air-Liquid-Interface (ALI) culture. Grooves with optimized dimensions were imprinted into collagen vitrigel membranes (CVM) to produce gel inserts for ALI culture. Grooved CVM substrates induced cell alignment in HTECs and hiPSC airway progenitors in submerged culture. Further, both cell types were able to terminally differentiate into a multi-ciliated epithelium on both flat and groove CVM substrates. When exposed to ALI conditions, HTECs lost alignment after 14 days. Meanwhile, hiPSC-derived airway progenitors maintained their alignment throughout 31 days of ALI culture. Interestingly, neither initial alignment on the grooves, nor maintained alignment on the grooves induced alignment of cilia basal bodies, an indication of the direction of ciliary beating direction in the airway cells. Planar organization of airway cells during or prior to ciliogenesis therefore does not appear to be a feasible strategy to control cilia organization and subsequent airway epithelial function and additional cues are likely necessary to produce cilia alignment.


Subject(s)
Hydrogels , Induced Pluripotent Stem Cells , Cells, Cultured , Cilia , Epithelial Cells , Epithelium , Humans
2.
Biomater Sci ; 6(2): 292-303, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29327014

ABSTRACT

There is a need to establish in vitro lung alveolar epithelial culture models to better understand the fundamental biological mechanisms that drive lung diseases. While primary alveolar epithelial cells (AEC) are a useful option to study mature lung biology, they have limited utility in vitro. Cells that survive demonstrate limited proliferative capacity and loss of phenotype over the first 3-5 days in traditional culture conditions. To address this limitation, we generated a novel physiologically relevant cell culture system for enhanced viability and maintenance of phenotype. Here we describe a method utilizing e-beam lithography, reactive ion etching, and replica molding to generate poly-dimethylsiloxane (PDMS) substrates containing hemispherical cavities that mimic the architecture and size of mouse and human alveoli. Primary AECs grown on these cavity-containing substrates form a monolayer that conforms to the substrate enabling precise control over cell sheet architecture. AECs grown in cavity culture conditions remain viable and maintain their phenotype over one week. Specifically, cells grown on substrates consisting of 50 µm diameter cavities remained 96 ± 4% viable and maintained expression of surfactant protein C (SPC), a marker of type 2 AEC over 7 days. While this report focuses on primary lung alveolar epithelial cells, our culture platform is potentially relevant and useful for growing primary cells from other tissues with similar cavity-like architecture and could be further adapted to other biomimetic shapes or contours.


Subject(s)
Biomimetic Materials/chemistry , Primary Cell Culture/methods , Pulmonary Alveoli/cytology , Respiratory Mucosa/cytology , Tissue Scaffolds/chemistry , Animals , Biomimetic Materials/adverse effects , Cell Line, Tumor , Cells, Cultured , Dimethylpolysiloxanes/chemistry , Humans , Mice , Mice, Inbred C57BL , Tissue Scaffolds/adverse effects
3.
Opt Lett ; 42(20): 4167-4170, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-29028039

ABSTRACT

We report on the demonstration of a spot size converter (SSC) for monolithic photonic integration at a wavelength of 850 nm on a GaAs substrate. We designed and fabricated a dual-waveguide AlGaAs chip. The design consists of a lower waveguide layer for efficient end-fire coupling to a single-mode fiber, an upper waveguide layer for high refractive index contrast waveguides, and a vertical SSC to connect the two waveguide layers. We measured a SSC conversion efficiency of 91% (or -0.4 dB) between the upper and lower waveguide layers for the TE mode at a wavelength of 850 nm.

4.
Phys Rev Lett ; 112(19): 190503, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24877922

ABSTRACT

We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.

SELECTION OF CITATIONS
SEARCH DETAIL
...