Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 326: 138435, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36933838

ABSTRACT

Calcium oxalate (CaOx) crystals in plants act as a sink for excess Ca and play an essential role in detoxifying heavy metals (HMs). However, the mechanism and related influencing factors remain unclear. Amaranth (Amaranthus tricolor L.) is a common edible vegetable rich in CaOx and a potential Cd hyperaccumulation species. In this study, the hydroponic experiment was carried out to investigate the effect of exogenous Ca concentrations on Cd uptake by amaranth. The results showed that either insufficient or excess Ca supply inhibited amaranth growth, while the Cd bioconcentration factor (BCF) increased with Ca concentration. Meanwhile, the sequence extraction results demonstrated that Cd mainly accumulated as pectate and protein-bound species (NaCl extracted) in the root and stem, compared to pectate, protein, and phosphate-bound (acetic acid extractable) species in the leaf. Correlation analysis showed that the concentration of exogenous Ca was positively correlated with amaranth-produced CaOx crystals but negatively correlated with insoluble oxalate-bound Cd in the leaf. However, since the accumulated insoluble oxalate-bound Cd was relatively low, Cd detoxification via the CaOx pathway in amaranth is limited.


Subject(s)
Amaranthus , Metals, Heavy , Soil Pollutants , Cadmium/analysis , Calcium/metabolism , Amaranthus/metabolism , Calcium Oxalate/metabolism , Metals, Heavy/metabolism , Calcium, Dietary/metabolism , Soil Pollutants/analysis
2.
J Hazard Mater ; 443(Pt B): 130242, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36327838

ABSTRACT

Microbial-induced carbonate precipitation (MICP) is a promising technology to immobilize/remediate heavy metals (HMs) like cadmium (Cd). However, the long-term stability of MICP-immobilized HMs is unclear, especially in farmland where chemical fertilization is necessary. Therefore, we performed MICP treatment on soils contaminated with various Cd compounds (CdCO3, CdS, and CdCl2) and added diammonium phosphate (DAP) to explore the impact of phosphate on the MICP-immobilized Cd. The results showed that MICP treatment was practical to immobilize the exchangeable Cd but to mobilize the carbonate and Fe/Mn oxide-bound Cd. After applying DAP, soil pH declined due to ammonium nitrification. At high P/Ca molar ratios (1/2 and 1), partial previously immobilized Cd was released due to the carbonate dissolution. Contrarily, exchangeable Cd transformed to less mobilizable Fe/Mn oxide-bound at low P/Ca molar ratios (1/4 and 1/8). Meanwhile, other treatments were also helpful in avoiding the release of immobilized Cd, such as applying non-ammonium phosphate and adding lime material after soil acidification. Our investigation suggested that the long-term stability of HMs in remediated sites should be carefully evaluated, especially in agricultural areas with phosphate and nitrogen fertilizer input.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Metals, Heavy/analysis , Phosphates/chemistry , Carbonates , Oxides/chemistry , Calcium Carbonate
3.
J Hazard Mater ; 434: 128936, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35461002

ABSTRACT

Carbonate-bound uranium (U) is critical in controlling the migration of U in circumneutral to alkaline conditions. The potential release risk of carbonate-bound U should be concerned due to the contribution of mineral replacement. Herein, we explored the fate of U during the conversion process from microbial-induced calcite to hydroxylapatite (HAP) and investigated the phase and morphology evolution of minerals and the immobilization efficiency, distribution, and stability of U. The results showed that most calcite could convert to HAP during the conversion process. The aqueous residual U was below 1.0 mg/L after U-HAP formation, and the U removal efficiencies were enhanced by 20.0-74.4% compared to the calcite precipitation process. XRD and TEM results showed that the products were a mixture of HAP and uramphite. The elemental mapping results showed that most U concentrated on uramphite while a handful of U distributed homogeneously in calcite and HAP matrixes. The stability test verified that U-bearing HAP decreased the U solubility by 98-100% relative to calcite due to the uramphite formation and U incorporation into HAP. Our findings demonstrated that the combinations of microbial-induced calcite precipitation and calcite-HAP conversion could facilitate the U immobilization in treating radioactive wastewater and soil.


Subject(s)
Uranium , Calcium Carbonate , Carbonates , Durapatite , Wastewater
4.
J Hazard Mater ; 412: 125261, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33550133

ABSTRACT

Coprecipitation with calcium carbonate (CaCO3) could decrease the bioavailability of arsenic (As). However, in a phosphate-rich environment, some CaCO3 will be converted to hydroxylapatite (HAP). Currently, the behavior of carbonate-bound As during conversion is unclear. Therefore, we prepared bio-induced CaCO3 in an As solution and converted it to HAP. The results showed that a high concentration of arsenate promoted vaterite precipitation and the conversion of CaCO3 to HAP. The dissolution data verified the low solubility of As in HAP, though its As-bearing CaCO3 precursor released up to 88.19% As during the conversion. Furthermore, HPLC-ICP-MS data showed partial oxidation of arsenite to arsenate, suggesting that CaCO3 and HAP's structure favored the incorporation of arsenate. Our results demonstrated that the stability of heavy metal-bearing CaCO3 should be considered, and the role of HAP in the immobilization of heavy metals such as As should not be overestimated.


Subject(s)
Arsenic , Metals, Heavy , Calcium Carbonate , Carbonates , Durapatite
SELECTION OF CITATIONS
SEARCH DETAIL
...