Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 760
Filter
1.
J Integr Plant Biol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961693

ABSTRACT

Dwarfing is a pivotal agronomic trait affecting both yield and quality. Citrus species exhibit substantial variation in plant height, among which internode length is a core element. However, the molecular mechanism governing internode elongation remains unclear. Here, we unveiled that the transcriptional cascade consisting of B-BOX DOMAIN PROTEIN 22 (BBX22) and ELONGATED HYPOCOTYL 5 (HY5) finely tunes plant height and internode elongation in citrus. Loss-of-function mutations of BBX22 in an early-flowering citrus (Citrus hindsii "SJG") promoted internode elongation and reduced pigment accumulation, whereas ectopic expression of BBX22 in SJG, sweet orange (C. sinensis), pomelo (C. maxima) or heterologous expression of BBX22 in tomato (Solanum lycopersicum) significantly decreased internode length. Furthermore, exogenous application of gibberellin A3 (GA3) rescued the shortened internode and dwarf phenotype caused by BBX22 overexpression. Additional experiments revealed that BBX22 played a dual role in regulation internode elongation and pigmentation in citrus. On the one hand, it directly bound to and activated the expression of HY5, GA metabolism gene (GA2 OXIDASE 8, GA2ox8), carotenoid biosynthesis gene (PHYTOENE SYNTHASE 1, PSY1) and anthocyanin regulatory gene (Ruby1, a MYB DOMAIN PROTEIN). On the other hand, it acted as a cofactor of HY5, enhancing the ability of HY5 to regulate target genes expression. Together, our results reveal the critical role of the transcriptional cascade consisting of BBX22 and HY5 in controlling internode elongation and pigment accumulation in citrus. Unraveling the crosstalk regulatory mechanism between internode elongation and fruit pigmentation provides key genes for breeding of novel types with both dwarf and health-beneficial fortification in citrus.

2.
Int Nurs Rev ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979771

ABSTRACT

AIM: This study explores the influencing factors of attitudes and behaviors toward use of ChatGPT based on the Technology Acceptance Model among registered nurses in Taiwan. BACKGROUND: The complexity of medical services and nursing shortages increases workloads. ChatGPT swiftly answers medical questions, provides clinical guidelines, and assists with patient information management, thereby improving nursing efficiency. INTRODUCTION: To facilitate the development of effective ChatGPT training programs, it is essential to examine registered nurses' attitudes toward and utilization of ChatGPT across diverse workplace settings. METHODS: An anonymous online survey was used to collect data from over 1000 registered nurses recruited through social media platforms between November 2023 and January 2024. Descriptive statistics and multiple linear regression analyses were conducted for data analysis. RESULTS: Among respondents, some were unfamiliar with ChatGPT, while others had used it before, with higher usage among males, higher-educated individuals, experienced nurses, and supervisors. Gender and work settings influenced perceived risks, and those familiar with ChatGPT recognized its social impact. Perceived risk and usefulness significantly influenced its adoption. DISCUSSION: Nurse attitudes to ChatGPT vary based on gender, education, experience, and role. Positive perceptions emphasize its usefulness, while risk concerns affect adoption. The insignificant role of perceived ease of use highlights ChatGPT's user-friendly nature. CONCLUSION: Over half of the surveyed nurses had used or were familiar with ChatGPT and showed positive attitudes toward its use. Establishing rigorous guidelines to enhance their interaction with ChatGPT is crucial for future training. IMPLICATIONS FOR NURSING AND HEALTH POLICY: Nurse managers should understand registered nurses' attitudes toward ChatGPT and integrate it into in-service education with tailored support and training, including appropriate prompt formulation and advanced decision-making, to prevent misuse.

3.
J Am Heart Assoc ; : e032904, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979831

ABSTRACT

BACKGROUND: Cardiac aging represents an independent risk factor for aging-associated cardiovascular diseases. Although evidence suggests an association between NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome formation and numerous cardiovascular diseases, its role in cardiac aging remains largely unclear. METHODS AND RESULTS: The longevity of mice with wild-type and NLRP3 knockout (NLRP3-/-) genotypes was assessed, with or without d-galactose treatment. Cardiac function was evaluated using echocardiography, and cardiac histopathology was examined through hematoxylin and eosin and Masson's trichrome staining. Senescence-associated ß-galactosidase (SA-ß-gal) staining was employed to detect cardiac aging. Western blotting was used to assess aging-related proteins (p53, p21) and pyroptosis-related proteins. Additionally, dihydroethidium staining, lactate dehydrogenase release, and interleukin-1ß ELISA assays were performed, along with measurements of total superoxide dismutase and malondialdehyde levels. In vitro, H9c2 cells were exposed to d-galactose for 24 hours in the absence or presence of N-acetyl-l-cysteine (reactive oxygen species inhibitor), BAY-117082 (nuclear factor κ-light-chain enhancer of activated B cells inhibitor), MCC950 (NLRP3 inhibitor), and VX-765 (Caspase-1 inhibitor). Immunofluorescence staining was employed to detect p53, gasdermin D, and apoptosis-associated speck-like protein proteins. Intracellular reactive oxygen species levels were assessed using fluorescence microscopy and flow cytometry. Senescence-associated ß-galactosidase staining and Western blotting were also employed in vitro for the same purpose. The results showed that NLRP3 upregulation was implicated in aging and cardiovascular diseases. Inhibition of NLRP3 extended life span, mitigated the aging phenotype, improved cardiac function and blood pressure, ameliorated lipid metabolism abnormalities, inhibited pyroptosis in cardiomyocytes, and ultimately alleviated cardiac aging. In vitro, the inhibition of reactive oxygen species, nuclear factor κ-light-chain enhancer of activated B cells, NLRP3, or caspase-1 attenuated NLRP3 inflammasome-mediated pyroptosis. CONCLUSIONS: The reactive oxygen species/nuclear factor κ-light-chain enhancer of activated B cells/NLRP3 signaling pathway loop contributes to d-galactose-treated cardiomyocyte senescence and cardiac aging.

4.
Theranostics ; 14(9): 3583-3602, 2024.
Article in English | MEDLINE | ID: mdl-38948067

ABSTRACT

Rationale: Mesenchymal stromal cells (MSCs) are considered a promising resource for cell therapy, exhibiting efficacy in ameliorating diverse bone diseases. However, most MSCs undergo apoptosis shortly after transplantation and produce apoptotic extracellular vesicles (ApoEVs). This study aims to clarify the potential role of ApoEVs from apoptotic MSCs in ameliorating osteoporosis and molecular mechanism. Methods: In this study, Dio-labeled bone marrow mesenchymal stem cells (BMSCs) were injected into mice to track BMSCs apoptosis and ApoEVs production. ApoEVs were isolated from BMSCs after inducing apoptosis, the morphology, size distribution, marker proteins expression of ApoEVs were characterized. Protein mass spectrometry analysis revealed functional differences in proteins between ApoEVs and BMSCs. BMSCs were adopted to test the cellular response to ApoEVs. Ovariectomy mice were used to further compare the ability of ApoEVs in promoting bone formation. SiRNA and lentivirus were used for gain and loss-of-function assay. Results: The results showed that BMSCs underwent apoptosis within 2 days after being injected into mice and produce a substantial quantity of ApoEVs. Proteomic analysis revealed that ApoEVs carried a diverse functional array of proteins, and easily traversed the circulation to reach the bone. After being phagocytized by endogenous BMSCs, ApoEVs efficiently promoted the proliferation, migration, and osteogenic differentiation of BMSCs. In an osteoporosis mouse model, treatment of ApoEVs alleviated bone loss and promoted bone formation. Mechanistically, ApoEVs carried Ras protein and activated the Ras/Raf1/Mek/Erk pathway to promote osteogenesis and bone formation in vitro and in vivo. Conclusion: Given that BMSC-derived ApoEVs are high-yield and easily obtained, our data underscore the substantive role of ApoEVs from dying BMSCs to treat bone loss, presenting broad implications for cell-free therapeutic modalities.


Subject(s)
Apoptosis , Extracellular Vesicles , Mesenchymal Stem Cells , Osteogenesis , Osteoporosis , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Mesenchymal Stem Cells/metabolism , Osteoporosis/therapy , Osteoporosis/metabolism , Mice , Female , Osteogenesis/physiology , Cell Differentiation , Mesenchymal Stem Cell Transplantation/methods , Cell Proliferation , Mice, Inbred C57BL , Disease Models, Animal , Ovariectomy , Proteomics , Signal Transduction
5.
Nutrients ; 16(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38931294

ABSTRACT

BACKGROUND: As ChatGPT becomes a primary information source for college students, its performance in providing dietary advice is under scrutiny. This study assessed ChatGPT's performance in providing nutritional guidance to college students. METHODS: ChatGPT's performance on dietary advice was evaluated by 30 experienced dietitians and assessed using an objective nutrition literacy (NL) test. The dietitians were recruited to assess the quality of ChatGPT's dietary advice, including its NL achievement and response quality. RESULTS: The results indicate that ChatGPT's performance varies across scenarios and is suboptimal for achieving NL with full achievement rates from 7.50% to 37.56%. While the responses excelled in readability, they lacked understandability, practicality, and completeness. In the NL test, ChatGPT showed an 84.38% accuracy rate, surpassing the NL level of Taiwanese college students. The top concern among the dietitians, cited 52 times in 242 feedback entries, was that the "response information lacks thoroughness or rigor, leading to misunderstandings or misuse". Despite the potential of ChatGPT as a supplementary educational tool, significant gaps must be addressed, especially in detailed dietary inquiries. CONCLUSION: This study highlights the need for improved AI educational approaches and suggests the potential for developing ChatGPT teaching guides or usage instructions to train college students and support dietitians.


Subject(s)
Nutritionists , Students , Humans , Universities , Female , Male , Health Literacy , Taiwan , Young Adult , Adult , Health Knowledge, Attitudes, Practice , Diet
6.
Bioengineering (Basel) ; 11(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927843

ABSTRACT

(1) Background: A rise in intraocular pressure (IOP) and decreased retinal ganglion cells are frequent indicators of effective modeling of chronic ocular hypertension in mice. In this study, the sensitivity of the mouse model to pharmaceutical therapy to reduce intraocular tension was assessed, the model's safety was confirmed using a cytotoxicity test, and the success rate of the mouse model of ocular hypertension was assessed by assessing alterations in IOP and neurons in the ganglion cell layer. (2) Methods: A mouse model of chronic ocular hypertension was produced in this study by employing photocrosslinkable sericin hydrogel injection and LED lamp irradiation. The eyes of 25 C57BL/6 male mice were subjected to 405 nm UV light from the front for 2 min after being injected with 5 µL of sericin hydrogel in the anterior chamber of the left eye. IOP in the mice was measured daily, and IOP rises greater than 5 mmHg were considered intraocular hypertension. When the IOP was lowered, the intervention was repeated once, but the interval between treatments was at least 2 weeks. The right eyes were not treated with anything as a normal control group. Mice eyeballs were stained with HE, Ni-type, and immunofluorescence to assess the model's efficacy. Two common drugs (tafluprost eye drops and timolol eye drops) were provided for one week after four weeks of stable IOP, and IOP changes were assessed to determine the drug sensitivity of the mouse model of chronic ocular hypertension. Furthermore, CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) was utilized to investigate the safety of the ocular hypertension model by evaluating the deleterious effects of photocrosslinkable sericin hydrogel on cells. (3) Results: Before injection, the basal IOP was (9.42 ± 1.28) mmHg (1 kPa = 7.5 mmHg) in the experimental group and (9.08 ± 1.21) in the control group. After injection, cataract occurred in one eye, corneal edema in one eye, endophthalmitis in one eye, iris incarceration in one eye, and eyeball atrophy in one eye. Five mice with complications were excluded from the experiment, and twenty mice were left. Four weeks after injection, the IOP of the experimental group was maintained at (19.7 ± 4.52) mmHg, and that of the control group was maintained at (9.92 ± 1.55) mmHg, and the difference between the two groups was statistically significant (p < 0.05). Before the intervention, the IOP in the experimental group was (21.7 ± 3.31) mmHg in the high IOP control group, (20.33 ± 2.00) mmHg in the tafluprost eye drops group, and (20.67 ± 3.12) mmHg in the timolol maleate eye drops group. The IOP after the intervention was (23.2 ± 1.03) mmHg, (12.7 ± 2.11) mmHg, and (10.4 ± 1.43) mmHg, respectively. Before and after the intervention, there were no significant differences in the high-IOP control group (p > 0.05), there were statistically significant differences in the timolol eye drops group (p < 0.05), and there were statistically significant differences in the tafluprost eye drops group (p < 0.05). One week after drug withdrawal, there was no significant difference in IOP among the three groups (p > 0.05). In the high-IOP group, the protein (sericin hydrogel) showed a short strips or fragmented structure in the anterior chamber, accompanied by a large number of macrophages and a small number of plasma cells. The shape of the chamber angle was normal in the blank control group. The number of retinal ganglion cells decreased significantly 8 weeks after injection of sericin hydrogel into the anterior chamber, and the difference was statistically significant compared with the blank control group (p < 0.05). After the cells were treated with photocrosslinkable sericin hydrogel, there was no significant difference in the data of the CellTiter 96® assay kit of MTS compared with the blank control group (p > 0.05). (4) Conclusions: A mouse model of chronic intraocular hypertension can be established successfully by injecting sericin in the anterior chamber and irradiating with ultraviolet light. The model can simulate the structural and functional changes of glaucoma and can effectively reduce IOP after the action of most antihypertensive drugs, and it is highly sensitive to drugs. Sericin has no obvious toxic effect on cells and has high safety.

7.
Biol Direct ; 19(1): 49, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910243

ABSTRACT

BACKGROUND: Most patients with acute myeloid leukemia (AML) eventually develop drug resistance, leading to a poor prognosis. Dysregulated long gene non coding RNAs (lincRNAs) have been implicated in chemoresistance in AML. Unfortunately, the effects of lincRNAs which participate in regulating the Adriamycin (ADR) resistance in AML cells remain unclear. Thus, the purpose of this study is to determine LINC00987 function in ADR-resistant AML. METHODS: In this study, ADR-resistant cells were constructed. LINC00987, miRNAs, and HMGA2 mRNA expression were measured by qRT-PCR. P-GP, BCRP, and HMGA2 protein were measured by Western blot. The proliferation was analyzed by MTS and calculated IC50. Soft agar colony formation assay and TUNEL staining were used to analyze cell colony formation and apoptosis. Xenograft tumor experiment was used to analyze the xenograft tumor growth of ADR-resistant AML. RESULTS: We found that higher expression of LINC00987 was observed in AML patients and associated with poor overall survival in AML patients. LINC00987 expression was increased in ADR-resistant AML cells, including ADR/MOLM13 and ADR/HL-60 cells. LINC00987 downregulation reduces ADR resistance in ADR/MOLM13 and ADR/HL-60 cells in vitro and in vivo, while LINC00987 overexpression enhanced ADR resistance in MOLM13 and HL-60 cells. Additionally, LINC00987 functions as a competing endogenous RNA for miR-4458 to affect ADR resistance in ADR/MOLM13 and ADR/HL-60 cells. HMGA2 is a target of miR-4458. LINC00987 knockdown and miR-4458 overexpression reduced HMGA2 expression. HMGA2 overexpression enhanced ADR resistance, which reversed the function of LINC00987 silencing in suppressing ADR resistance of ADR/MOLM13 and ADR/HL-60 cells. CONCLUSIONS: Downregulation of LINC00987 weakens ADR resistance by releasing miR-4458 to deplete HMGA2 in ADR/MOLM13 and ADR/HL-60. Therefore, LINC00987 may act as the therapeutic target for treating chemoresistant AML.


Subject(s)
Doxorubicin , Drug Resistance, Neoplasm , HMGA2 Protein , Leukemia, Myeloid, Acute , MicroRNAs , RNA, Long Noncoding , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/drug therapy , Humans , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Drug Resistance, Neoplasm/genetics , Doxorubicin/pharmacology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , Animals , Cell Line, Tumor , HL-60 Cells , Gene Silencing , Apoptosis , Cell Proliferation , Female
8.
Nanoscale ; 16(27): 12934-12946, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38913123

ABSTRACT

Polyetheretherketone (PEEK), renowned for its exceptional mechanical properties and bio-stability, is considered a promising alternative to traditional metal-based implants. However, the inferior bactericidal activity and the limited angiogenic and osteogenic properties of PEEK remain the three major obstacles to osseointegration in vivo. To overcome these obstacles, in this work, a versatile heterostructured nanocoating was conceived and equipped on PEEK. This nanocoating was designed to endow PEEK with the ability of photo-activated pathogen disinfection, along with enhanced angiogenesis and osteogenesis, effectively addressing the triple-barrier challenge towards osseointegration. The crafted nanocoating, encompassing diverse nutritional metal elements (Fe3+, Mg2+, and Sr2+) and a fusion peptide adept at promoting angiogenesis and osteogenesis, was seamlessly decorated onto PEEK. The engineered implant exhibited an antibacterial activity of over 94% upon near-infrared illumination by virtue of the photothermal conversion of the polyphenol nanocoating. Simultaneously, the decorated hierarchical nanocoatings synergistically promoted cellular adhesion and proliferation and up-regulated angiogenesis-/osteogenesis-associated cytokine expression in endothelial/osteoblast cells, resulting in superior angiogenic differentiation and osteoinductive capability in vitro. Moreover, an in vivo assay in a rabbit femoral defect model revealed that the decorated implant can achieve ameliorative osseointegrative fixation. Collectively, this work offers a practical and instructive clinical strategy to address the triple-barrier challenge associated with PEEK-based implants.


Subject(s)
Anti-Bacterial Agents , Benzophenones , Osseointegration , Polyethylene Glycols , Polymers , Animals , Osseointegration/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Rabbits , Polymers/chemistry , Polymers/pharmacology , Polyethylene Glycols/chemistry , Humans , Osteogenesis/drug effects , Prostheses and Implants , Peptides/chemistry , Peptides/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Staphylococcus aureus/drug effects , Osteoblasts/drug effects , Osteoblasts/cytology , Osteoblasts/metabolism , Human Umbilical Vein Endothelial Cells , Ketones/chemistry , Ketones/pharmacology , Cell Proliferation/drug effects , Cell Line , Escherichia coli/drug effects , Cell Adhesion/drug effects
9.
Ann Otol Rhinol Laryngol ; : 34894241262113, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38898810

ABSTRACT

OBJECTIVES: Ultrasound (US)-guided procedures can be used in the evaluation and treatment of neck masses. However, these procedures need to be practiced before being executed on humans. The aim of this study is to evaluate the efficacy of a training program using a gelatin phantom to practice US-guided procedures. METHODS: This program included a lecture and practice with a gelatin phantom. We recruited doctors from different hospitals to practice US-guided procedures, including fine-needle aspiration (FNA), core needle biopsy (CNB), percutaneous ethanol injection (PEI), and radiofrequency ablation (RFA). We used a questionnaire with a 5-point scale to evaluate the effectiveness of practicing US-guided procedures under a gelatin phantom. RESULTS: Forty-four doctors participated, and 37 of them completed the questionnaires. After training, the mean (SD) scores of the doctors were 4.68 (0.47) for "Satisfaction with this course," 4.54 (0.61) for "Ease in practicing FNA&CNB using the phantom," 4.49 (0.61) for "Ease in practicing PEI using the phantom," 4.49 (0.65) for "Ease in practicing RFA using the phantom," and 4.57 (0.55) for "The course effectively familiarizing participants with US-guided procedures." Participants without experience in US examination had higher scores than those with previous US experience, but the difference was not statistically significant. CONCLUSION: A combination of lectures and hands-on practice of US-guided procedures using a gelatin phantom is an effective educational method for doctors interested in head and neck US. After the training program, doctors gained a better understanding of the necessary steps and skills required for these procedures. They can correctly insert the instruments into the target lesion and perform different US-guided procedures.

10.
J Mater Chem B ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904147

ABSTRACT

Improving the regenerative ability of senescent stem cells is a critical issue in combating aging. The destiny and function of senescent stem cells are controlled by the niche, including the physical architecture of the surface of the extracellular matrix (ECM). In this study, we explored the functions of TiO2 nanotube topography on mesenchymal stem cells (MSCs) under senescence, as well as its mechanical effects on senescence. First, we created different nanotube topographies on the titanium samples. Next, we cultured senescent mesenchymal stem cells (S-MSCs) on samples with various nanotube topographies to determine suitable parameters. We found nanotube with a diameter of 10 nm significantly alleviated the cellular senescence of S-MSCs and improved the osteogenic differentiation of S-MSCs in vitro. Using an ectopic periodontium regeneration model, we confirmed that specific nanotube topography could promote tissue regeneration of S-MSCs in vivo. Moreover, we demonstrated that nanotube topography activated YAP in S-MSCs and reformed nuclear-cytoskeletal morphology to inhibit senescence. Taken together, our study establishes a bridge linking between nano-topography, mechanics, and senescence, suggesting a potential strategy to improve tissue regeneration in aged individuals by providing optimized surface topography on biomaterials.

11.
J Cell Mol Med ; 28(12): e18404, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888489

ABSTRACT

In patients with nasopharyngeal carcinoma (NPC), the alteration of immune responses in peripheral blood remains unclear. In this study, we established an immune cell profile for patients with NPC and used flow cytometry and machine learning (ML) to identify the characteristics of this profile. After isolation of circulating leukocytes, the proportions of 104 immune cell subsets were compared between NPC group and the healthy control group (HC). Data obtained from the immune cell profile were subjected to ML training to differentiate between the immune cell profiles of the NPC and HC groups. We observed that subjects in the NPC group presented higher proportions of T cells, memory B cells, short-lived plasma cells, IgG-positive B cells, regulatory T cells, MHC II+ T cells, CTLA4+ T cells and PD-1+ T cells than subjects in the HC group, indicating weaker and compromised cellular and humoral immune responses. ML revealed that monocytes, PD-1+ CD4 T cells, memory B cells, CTLA4+ CD4 Treg cells and PD-1+ CD8 T cells were strongly contributed to the difference in immune cell profiles between the NPC and HC groups. This alteration can be fundamental in developing novel immunotherapies for NPC.


Subject(s)
Flow Cytometry , Machine Learning , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/pathology , Flow Cytometry/methods , Male , Female , Middle Aged , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/pathology , Adult , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes/immunology , Case-Control Studies , Aged
12.
Angew Chem Int Ed Engl ; : e202410417, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38924241

ABSTRACT

The electrochemical production of hydrogen peroxide (H2O2) using metal-free catalysts has emerged as a viable and sustainable alternative to the conventional anthraquinone process. However, the precise architectural design of these electrocatalysts poses a significant challenge, requiring intricate structural engineering to optimize electron transfer during the oxygen reduction reaction (ORR). Herein, we introduce a novel design of covalent organic frameworks (COFs) that effectively shift the ORR from a four-electron to a more advantageous two-electron pathway. Notably, the JUC-660 COF, with strategically charge-modified benzyl moieties, achieved a continuous high H2O2 yield of over 1200 mmol g-1 h-1 for an impressive duration of over 85 hours in a flow cell setting, marking it as one of the most efficient metal-free and non-pyrolyzed H2O2 electrocatalysts reported to date. Theoretical computations alongside in-situ infrared spectroscopy indicate that JUC-660 markedly diminishes the adsorption of the OOH* intermediate, thereby steering the ORR towards the desired pathway. Furthermore, the versatility of JUC-660 was demonstrated through its application in the electro-Fenton reaction, where it efficiently and rapidly removed aqueous contaminants. This work delineates a pioneering approach to altering the ORR pathway, ultimately paving the way for the development of highly effective metal-free H2O2 electrocatalysts.

13.
Health Educ Res ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776131

ABSTRACT

The use of electronic cigarettes (e-cigarettes) is on the rise among young adults, with higher public acceptance than traditional tobacco. A study in Taiwan employed concept mapping to explore risk and benefit perceptions of e-cigarette use among college students. The study involved 100 college students from 11 Taiwanese universities, with 50 being e-cigarette users and 50 non-users. Data collection and analysis were done with the GroupWisdom™ platform. Participants engaged in brainstorming, rating and sorting their perceptions, which were analyzed using multidimensional scaling and hierarchical cluster analyses. The participants' mean age was 19.24 years, and 55% were male. This process resulted in the identification of 10 clusters encompassing 64 statements, with 3 clusters focused on risk perceptions, 6 on benefit perceptions, and 1 dealing with e-cigarette regulations. Notably, risk perceptions were rated higher than benefit perceptions. Non-users held significantly higher risk perceptions and lower benefit perceptions across the nine clusters related to e-cigarette use. Concept mapping proved to be an effective tool for understanding college students' perceptions. These findings can assist health educators in comprehending college students' viewpoints on e-cigarette use and in developing targeted interventions. Additionally, exploring benefit perceptions may enhance students' critical thinking skills regarding e-cigarette advertising.

14.
Biomolecules ; 14(5)2024 May 12.
Article in English | MEDLINE | ID: mdl-38785978

ABSTRACT

Breast cancer is a leading cause of cancer mortality in women worldwide. Using the Infinium MethylationEPIC BeadChip, we analyzed plasma sample methylation to identify the SRCIN1 gene in breast cancer patients. We assessed SRCIN1-related roles and pathways for their biomarker potential. To verify the methylation status, quantitative methylation-specific PCR (qMSP) was performed on genomic DNA and circulating cell-free DNA samples, and mRNA expression analysis was performed using RT‒qPCR. The results were validated in a Western population; for this analysis, the samples included plasma samples from breast cancer patients from the USA and from The Cancer Genome Atlas (TCGA) cohort. To study the SRCIN1 pathway, we conducted cell viability assays, gene manipulation and RNA sequencing. SRCIN1 hypermethylation was identified in 61.8% of breast cancer tissues from Taiwanese patients, exhibiting specificity to this malignancy. Furthermore, its presence correlated significantly with unfavorable 5-year overall survival outcomes. The levels of methylated SRCIN1 in the blood of patients from Taiwan and the USA correlated with the stage of breast cancer. The proportion of patients with high methylation levels increased from 0% in healthy individuals to 63.6% in Stage 0, 80% in Stage I and 82.6% in Stage II, with a sensitivity of 78.5%, an accuracy of 90.3% and a specificity of 100%. SRCIN1 hypermethylation was significantly correlated with increased SRCIN1 mRNA expression (p < 0.001). Knockdown of SRCIN1 decreased the viability of breast cancer cells. SRCIN1 silencing resulted in the downregulation of ESR1, BCL2 and various cyclin protein expressions. SRCIN1 hypermethylation in the blood may serve as a noninvasive biomarker, facilitating early detection and prognosis evaluation, and SRCIN1-targeted therapies could be used in combination regimens for breast cancer patients.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Cell Proliferation , DNA Methylation , Humans , Breast Neoplasms/genetics , Breast Neoplasms/blood , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , DNA Methylation/genetics , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Cell Proliferation/genetics , Prognosis , Middle Aged , Gene Expression Regulation, Neoplastic , Early Detection of Cancer , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/blood , Cell Line, Tumor , Adult
15.
Biomedicines ; 12(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38790942

ABSTRACT

The prevention of postoperative recurrence after endoscopic sinus surgery (ESS) relies on targeting specific pathological mechanisms according to individuals' immunological profiles. However, essential biomarkers and biological characteristics of difficult-to-treat chronic rhinosinusitis (CRS) patients are not well-defined. The aim of this study was to explore the immunologic profiles of subgroups of CRS patients and determine the specific cytokines responsible for recalcitrant or recurrent CRS with nasal polyposis (rCRSwNP). We used 30 cytokine antibody arrays to determine the key cytokines related to recurrent polypogenesis. Enzyme-linked immunosorbent assay (ELISA) experiments were conducted to assess the levels of these key cytokines in 78 patients. Polymorphonuclear leukocytes (PMNs) isolated from nasal polyps were challenged with specific cytokines to examine the levels of enhanced interleukin (IL)-8 production. Finally, we used immunohistochemistry (IHC) staining to check for the presence and distribution of the biomarkers within nasal polyps. A cytokine antibody array revealed that IL-8, IL-13, IL-15, and IL-20 were significantly higher in the recalcitrant CRSwNP group. Subsequent ELISA screening showed a stepwise increase in tissue IL-8 levels in the CHR, CRSsNP, and CRSwNP groups. PMNs isolated from nine CRSwNP cases all demonstrated enhanced IL-8 production after IL-15 treatment. IHC staining was labeled concurrent IL-8 and IL-15 expression in areas of prominent neutrophil infiltration. Our results suggest that IL-15 within the sinonasal mucosa plays a crucial role in promoting IL-8 secretion by infiltrating PMNs in recalcitrant nasal polyps. In addition, we propose a novel therapeutic strategy targeting the anti-IL-15/IL-8 axis to treat CRS with nasal polyposis.

16.
Cell Biol Toxicol ; 40(1): 37, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777957

ABSTRACT

Bisphenol A (BPA) is a common component in the manufacture of daily plastic consumer goods. Recent studies have suggested that prenatal exposure to BPA can increase the susceptibility of offspring to mental illness, although the underlying mechanisms remain unclear. In this study, we performed transcriptomic and epigenomic profiling in the adult mouse brain following prenatal exposure to low-dose BPA. We observed a sex-specific transcriptional dysregulation in the cortex, with more significant differentially expressed genes was observed in adult cortex from male offspring. Moreover, the upregulated genes primarily influenced neuronal functions, while the downregulated genes were significantly associated with energy metabolism pathways. More evidence supporting impaired mitochondrial function included a decreased ATP level and a reduced number of mitochondria in the cortical neuron of the BPA group. We further investigated the higher-order chromatin regulatory patterns of DEGs by incorporating published Hi-C data. Interestingly, we found that upregulated genes exhibited more distal interactions with multiple enhancers, while downregulated genes displayed relatively short-range interactions among adjacent genes. Our data further revealed decreased H3K9me3 signal on the distal enhancers of upregulated genes, whereas increased DNA methylation and H3K27me3 signals on the promoters of downregulated genes. In summary, our study provides compelling evidence for the potential health risks associated with prenatal exposure to BPA, and uncovers sex-specific transcriptional changes with a complex interplay of multiple epigenetic mechanisms.


Subject(s)
Benzhydryl Compounds , Brain , DNA Methylation , Epigenesis, Genetic , Phenols , Prenatal Exposure Delayed Effects , Animals , Benzhydryl Compounds/toxicity , Phenols/toxicity , Female , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Epigenesis, Genetic/drug effects , Male , Mice , Brain/metabolism , Brain/drug effects , DNA Methylation/drug effects , Transcriptome/drug effects , Transcriptome/genetics , Mice, Inbred C57BL
17.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791287

ABSTRACT

Residue contact maps provide a condensed two-dimensional representation of three-dimensional protein structures, serving as a foundational framework in structural modeling but also as an effective tool in their own right in identifying inter-helical binding sites and drawing insights about protein function. Treating contact maps primarily as an intermediate step for 3D structure prediction, contact prediction methods have limited themselves exclusively to sequential features. Now that AlphaFold2 predicts 3D structures with good accuracy in general, we examine (1) how well predicted 3D structures can be directly used for deciding residue contacts, and (2) whether features from 3D structures can be leveraged to further improve residue contact prediction. With a well-known benchmark dataset, we tested predicting inter-helical residue contact based on AlphaFold2's predicted structures, which gave an 83% average precision, already outperforming a sequential features-based state-of-the-art model. We then developed a procedure to extract features from atomic structure in the neighborhood of a residue pair, hypothesizing that these features will be useful in determining if the residue pair is in contact, provided the structure is decently accurate, such as predicted by AlphaFold2. Training on features generated from experimentally determined structures, we leveraged knowledge from known structures to significantly improve residue contact prediction, when testing using the same set of features but derived using AlphaFold2 structures. Our results demonstrate a remarkable improvement over AlphaFold2, achieving over 91.9% average precision for a held-out subset and over 89.5% average precision in cross-validation experiments.


Subject(s)
Membrane Proteins , Models, Molecular , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Conformation, alpha-Helical , Protein Folding , Binding Sites , Databases, Protein , Computational Biology/methods
18.
Mol Ecol ; 33(12): e17385, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38738821

ABSTRACT

Microbes are thought to be distributed and circulated around the world, but the connection between marine and terrestrial microbiomes remains largely unknown. We use Plantibacter, a representative genus associated with plants, as our research model to investigate the global distribution and adaptation of plant-related bacteria in plant-free environments, particularly in the remote Southern Ocean and the deep Atlantic Ocean. The marine isolates and their plant-associated relatives shared over 98% whole-genome average nucleotide identity (ANI), indicating recent divergence and ongoing speciation from plant-related niches to marine environments. Comparative genomics revealed that the marine strains acquired new genes via horizontal gene transfer from non-Plantibacter species and refined existing genes through positive selection to improve adaptation to new habitats. Meanwhile, marine strains retained the ability to interact with plants, such as modifying root system architecture and promoting germination. Furthermore, Plantibacter species were found to be widely distributed in marine environments, revealing an unrecognized phenomenon that plant-associated microbiomes have colonized the ocean, which could serve as a reservoir for plant growth-promoting microbes. This study demonstrates the presence of an active reservoir of terrestrial plant growth-promoting bacteria in remote marine systems and advances our understanding of the microbial connections between plant-associated and plant-free environments at the genome level.


Subject(s)
Gene Transfer, Horizontal , Plants/microbiology , Plants/genetics , Microbiota/genetics , Phylogeny , Adaptation, Physiological/genetics , Genome, Bacterial/genetics , Ecosystem , Atlantic Ocean , Biological Evolution , Seawater/microbiology
19.
Sci Adv ; 10(14): eadj4009, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38569025

ABSTRACT

Triple-negative breast cancer (TNBC) is the deadliest subtype of breast cancer owing to the lack of effective therapeutic targets. Splicing factor 3a subunit 2 (SF3A2), a poorly defined splicing factor, was notably elevated in TNBC tissues and promoted TNBC progression, as confirmed by cell proliferation, colony formation, transwell migration, and invasion assays. Mechanistic investigations revealed that E3 ubiquitin-protein ligase UBR5 promoted the ubiquitination-dependent degradation of SF3A2, which in turn regulated UBR5, thus forming a feedback loop to balance these two oncoproteins. Moreover, SF3A2 accelerated TNBC progression by, at least in part, specifically regulating the alternative splicing of makorin ring finger protein 1 (MKRN1) and promoting the expression of the dominant and oncogenic isoform, MKRN1-T1. Furthermore, SF3A2 participated in the regulation of both extrinsic and intrinsic apoptosis, leading to cisplatin resistance in TNBC cells. Collectively, these findings reveal a previously unknown role of SF3A2 in TNBC progression and cisplatin resistance, highlighting SF3A2 as a potential therapeutic target for patients with TNBC.


Subject(s)
Cisplatin , Triple Negative Breast Neoplasms , Humans , Cisplatin/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Alternative Splicing , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
20.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 172-180, 2024 Apr 01.
Article in English, Chinese | MEDLINE | ID: mdl-38597077

ABSTRACT

OBJECTIVES: The effect of TiO2 nanotube morphology on the differentiation potency of senescent periodontal ligament stem cells was investigated. METHODS: Two types of titanium sheets with TiO2 nanotube morphology (20V-NT and 70V-NT) were prepared via anodic oxidation at 20 and 70 V separately, and their surface morphology was observed. Young periodontal ligament stem cells were cultivated in an osteogenic induction medium, and the most effective surface morphology in promoting osteogenic differentiation was selected. RO3306 and Nutlin-3a were used to induce the aging of young periodontal ligament stem cells, and senescent periodontal ligament stem cells were obtained. The osteogenic differentiation of senescent periodontal ligament stem cells was induced, and the effect of surface morphology on osteogenic differentiation was observed. RESULTS: Nanotube morphology was achieved on the surfaces of titanium sheets through anodic oxidation, and the diameters of the nanotubes increased with voltage. A significant difference in the effect of nanotube morphology was found among nanotubes with different diameters in the young periodontal ligament stem cells. The surface nanotube morphology of 20V-NT had a more significant effect that promoted osteogenic differentiation. Compared with a smooth titanium sheet, the surface nanotube morphology of 20V-NT increased the number of alkaline phosphatase-positive senescent periodontal ligament stem cells and promoted calcium deposition and the expression of osteogenic marker genes Runt-related transcription factor 2, osteopontin, and osteocalcin. CONCLUSIONS: A special nanotube morphology enhances the differentiation ability of senescent periodontal ligament stem cells, provides an effective method for periodontal regeneration, and further improves the performance of implants.


Subject(s)
Dental Implants , Osteogenesis , Periodontal Ligament/metabolism , Titanium/metabolism , Titanium/pharmacology , Stem Cells , Cell Differentiation , Cell Proliferation , Cells, Cultured , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...