Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(47): 41421-41427, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29090901

ABSTRACT

The understanding and control of the emission zone in organic light emitting diodes (OLEDs) is crucial to the device operational stability. Using the photoluminescence and electroluminescence degradation data, we have developed a modeling methodology to quantitatively determine the length of the emission zone and correlate that with the degradation mechanism. We first validate the modeling results by studying the emitter concentration effect on operational stability of devices using the well-studied thermal activated delayed fluorescent (TADF) emitter (4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN), and our results are consistent with previous published data. We further applied this methodology to study the emitter concentration effect using another TADF emitter, 4-carbazolyl-2-methylisoindole-1,3-dione (dopant 1). The results show that the emission zone of the dopant 1 devices is narrower than the 4CzIPN device, leading to faster degradation. While a higher emitter concentration does not result in widening of the emission zone, we were able to widen the emission zone and hence extend the device lifetime using a mixed host.

SELECTION OF CITATIONS
SEARCH DETAIL
...