Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 87: 38-45, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28549293

ABSTRACT

This work proposes the use of Genetic Algorithms (GA) in tracing and recognizing the pericardium contour of the human heart using Computed Tomography (CT) images. We assume that each slice of the pericardium can be modelled by an ellipse, the parameters of which need to be optimally determined. An optimal ellipse would be one that closely follows the pericardium contour and, consequently, separates appropriately the epicardial and mediastinal fats of the human heart. Tracing and automatically identifying the pericardium contour aids in medical diagnosis. Usually, this process is done manually or not done at all due to the effort required. Besides, detecting the pericardium may improve previously proposed automated methodologies that separate the two types of fat associated to the human heart. Quantification of these fats provides important health risk marker information, as they are associated with the development of certain cardiovascular pathologies. Finally, we conclude that GA offers satisfiable solutions in a feasible amount of processing time.


Subject(s)
Algorithms , Automation , Pericardium/diagnostic imaging , Tomography, X-Ray Computed/methods , Adipose Tissue/diagnostic imaging , Humans
2.
Comput Biol Med ; 89: 520-529, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28318505

ABSTRACT

We propose a methodology to predict the cardiac epicardial and mediastinal fat volumes in computed tomography images using regression algorithms. The obtained results indicate that it is feasible to predict these fats with a high degree of correlation, thus alleviating the requirement for manual or automatic segmentation of both fat volumes. Instead, segmenting just one of them suffices, while the volume of the other may be predicted fairly precisely. The correlation coefficient obtained by the Rotation Forest algorithm using MLP Regressor for predicting the mediastinal fat based on the epicardial fat was 0.9876, with a relative absolute error of 14.4% and a root relative squared error of 15.7%. The best correlation coefficient obtained in the prediction of the epicardial fat based on the mediastinal was 0.9683 with a relative absolute error of 19.6% and a relative squared error of 24.9%. Moreover, we analysed the feasibility of using linear regressors, which provide an intuitive interpretation of the underlying approximations. In this case, the obtained correlation coefficient was 0.9534 for predicting the mediastinal fat based on the epicardial, with a relative absolute error of 31.6% and a root relative squared error of 30.1%. On the prediction of the epicardial fat based on the mediastinal fat, the correlation coefficient was 0.8531, with a relative absolute error of 50.43% and a root relative squared error of 52.06%. In summary, it is possible to speed up general medical analyses and some segmentation and quantification methods that are currently employed in the state-of-the-art by using this prediction approach, which consequently reduces costs and therefore enables preventive treatments that may lead to a reduction of health problems.


Subject(s)
Adipose Tissue/diagnostic imaging , Image Processing, Computer-Assisted , Machine Learning , Mediastinum/diagnostic imaging , Pericardium/diagnostic imaging , Tomography, X-Ray Computed , Female , Humans , Male
3.
Physiol Meas ; 34(6): 671-94, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23719169

ABSTRACT

In this paper, we present a new pipeline for the fast and accurate segmentation of impedance images of the lungs using electrical impedance tomography (EIT). EIT is an emerging, promising, non-invasive imaging modality that produces real-time, low spatial but high temporal resolution images of impedance inside a body. Recovering impedance itself constitutes a nonlinear ill-posed inverse problem, therefore the problem is usually linearized, which produces impedance-change images, rather than static impedance ones. Such images are highly blurry and fuzzy along object boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to restrict the search region of the Kalman filter. Next, we proceed with augmenting the Kalman filter by incorporating an adaptive foreground detection system to provide the boundary contours for the Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo deformation in a respiratory cycle. The proposed method has been validated by using performance statistics such as misclassified area, and false positive rate, and compared to previous approaches. The results show that the proposed automated method can be a fast and reliable segmentation tool for EIT imaging.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Lung/anatomy & histology , Tomography/instrumentation , Adult , Automation , Electric Impedance , Humans , Lung/diagnostic imaging , Male , Thorax/anatomy & histology , Time Factors , Tomography, X-Ray Computed
4.
Phys Med Biol ; 53(18): 4875-92, 2008 Sep 21.
Article in English | MEDLINE | ID: mdl-18711245

ABSTRACT

This study aimed at investigating the effect of myocardial motion on pulsating blood flow distribution of the left anterior descending coronary artery in the presence of atheromatous stenosis. The moving 3D arterial tree geometry has been obtained from conventional x-ray angiograms obtained during the heart cycle and includes a number of major branches. The geometry reconstruction model has been validated against projection data from a virtual phantom arterial tree as well as with CT-based reconstruction data for the same patient investigated. Reconstructions have been obtained for a number of temporal points while linear interpolation has been used for all intermediate instances. Blood has been considered as a non-Newtonian fluid. Results have been obtained using the same pulse for the inlet blood flow rate but with fixed arterial tree geometry as well as under steady-state conditions corresponding to the mean flow rate. Predictions indicate that myocardial motion has only a minor effect on flow distribution within the arterial tree relative to the effect of the blood pressure pulse.


Subject(s)
Blood Flow Velocity/physiology , Coronary Circulation/physiology , Coronary Vessels/physiology , Heart/physiology , Models, Cardiovascular , Movement/physiology , Pulsatile Flow/physiology , Animals , Computer Simulation , Humans , Nonlinear Dynamics
5.
Physiol Meas ; 29(6): S125-38, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18544799

ABSTRACT

Objective, non-invasive measures of lung maturity and development, oxygen requirements and lung function, suitable for use in small, unsedated infants, are urgently required to define the nature and severity of persisting lung disease, and to identify risk factors for developing chronic lung problems. Disorders of lung growth, maturation and control of breathing are among the most important problems faced by the neonatologists. At present, no system for continuous monitoring of neonate lung function to reduce the risk of chronic lung disease in infancy in intensive care units exists. We are in the process of developing a new integrated electrical impedance tomography (EIT) system based on wearable technology to integrate measures of the boundary diameter from the boundary form for neonates into the reconstruction algorithm. In principle, this approach could provide a reduction of image artefacts in the reconstructed image associated with incorrect boundary form assumptions. In this paper, we investigate the required accuracy of the boundary form that would be suitable to minimize artefacts in the reconstruction for neonate lung function. The number of data points needed to create the required boundary form is automatically determined using genetic algorithms. The approach presented in this paper is to assist quality of the reconstruction using different approximations to the ideal boundary form. We also investigate the use of a wavelet algebraic multi-grid (WAMG) preconditioner to reduce the reconstruction computation requirements. Results are presented that demonstrate a full 3D model is required to minimize artefact in the reconstructed image and the implementation of a WAMG for EIT.


Subject(s)
Algorithms , Lung/physiology , Tomography/methods , Electric Impedance , Electrodes , Humans , Infant, Newborn , Models, Biological , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...