Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol ; 136(3): 405-423, 2018 09.
Article in English | MEDLINE | ID: mdl-29881994

ABSTRACT

Sporadic amyotrophic lateral sclerosis (sALS) is the most common form of ALS, however, the molecular mechanisms underlying cellular damage and motor neuron degeneration remain elusive. To identify molecular signatures of sALS we performed genome-wide expression profiling in laser capture microdissection-enriched surviving motor neurons (MNs) from lumbar spinal cords of sALS patients with rostral onset and caudal progression. After correcting for immunological background, we discover a highly specific gene expression signature for sALS that is associated with phosphorylated TDP-43 (pTDP-43) pathology. Transcriptome-pathology correlation identified casein kinase 1ε (CSNK1E) mRNA as tightly correlated to levels of pTDP-43 in sALS patients. Enhanced crosslinking and immunoprecipitation in human sALS patient- and healthy control-derived frontal cortex, revealed that TDP-43 binds directly to and regulates the expression of CSNK1E mRNA. Additionally, we were able to show that pTDP-43 itself binds RNA. CK1E, the protein product of CSNK1E, in turn interacts with TDP-43 and promotes cytoplasmic accumulation of pTDP-43 in human stem-cell-derived MNs. Pathological TDP-43 phosphorylation is therefore, reciprocally regulated by CK1E activity and TDP-43 RNA binding. Our framework of transcriptome-pathology correlations identifies candidate genes with relevance to novel mechanisms of neurodegeneration.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Casein Kinase I/metabolism , DNA-Binding Proteins/metabolism , Motor Neurons/metabolism , Spinal Cord/metabolism , Transcriptome , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/pathology , Female , Humans , Male , Middle Aged , Motor Neurons/pathology , Phosphorylation , Spinal Cord/pathology
2.
EMBO J ; 34(21): 2633-51, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26330466

ABSTRACT

Interest in RNA dysfunction in amyotrophic lateral sclerosis (ALS) recently aroused upon discovering causative mutations in RNA-binding protein genes. Here, we show that extensive down-regulation of miRNA levels is a common molecular denominator for multiple forms of human ALS. We further demonstrate that pathogenic ALS-causing mutations are sufficient to inhibit miRNA biogenesis at the Dicing step. Abnormalities of the stress response are involved in the pathogenesis of neurodegeneration, including ALS. Accordingly, we describe a novel mechanism for modulating microRNA biogenesis under stress, involving stress granule formation and re-organization of DICER and AGO2 protein interactions with their partners. In line with this observation, enhancing DICER activity by a small molecule, enoxacin, is beneficial for neuromuscular function in two independent ALS mouse models. Characterizing miRNA biogenesis downstream of the stress response ties seemingly disparate pathways in neurodegeneration and further suggests that DICER and miRNAs affect neuronal integrity and are possible therapeutic targets.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , MicroRNAs/biosynthesis , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/pathology , Animals , Base Sequence , Cytoplasmic Granules/metabolism , DEAD-box RNA Helicases/metabolism , Down-Regulation , Drug Evaluation, Preclinical , Enoxacin/pharmacology , Female , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/genetics , Motor Neurons/metabolism , RNA Interference , RNA Processing, Post-Transcriptional , Ribonuclease III/metabolism , Stress, Physiological , Superoxide Dismutase/genetics , Superoxide Dismutase-1
3.
Neurobiol Aging ; 34(9): 2234.e13-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23597494

ABSTRACT

Hexanucleotide repeat expansions in C9ORF72 are a common cause of familial and apparently sporadic amyotrophic lateral sclerosis (ALS) and frontal temporal dementia (FTD). The mechanism by which expansions cause neurodegeneration is unknown, but current evidence supports both loss-of-function and gain-of-function mechanisms. We used pooled next-generation sequencing of the C9ORF72 gene in 389 ALS patients to look for traditional loss-of-function mutations. Although rare variants were identified, none were likely to be pathogenic, suggesting that mutations other than the repeat expansion are not a common cause of ALS, and providing supportive evidence for a gain-of-function mechanism. We also show by repeat-primed PCR genotyping that the C9ORF72 expansion frequency varies by geographical region within the United States, with an unexpectedly high frequency in the Mid-West. Finally we also show evidence of somatic instability of the expansion size by Southern blot, with the largest expansions occurring in brain tissue.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Introns/genetics , Mutation , Proteins/genetics , Trinucleotide Repeat Expansion/genetics , Trinucleotide Repeat Expansion/physiology , C9orf72 Protein , Cohort Studies , Female , Humans , Male
4.
Hum Mol Genet ; 19(2): 313-28, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19864493

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive weakness from loss of motor neurons. The fundamental pathogenic mechanisms are unknown and recent evidence is implicating a significant role for abnormal exon splicing and RNA processing. Using new comprehensive genomic technologies, we studied exon splicing directly in 12 sporadic ALS and 10 control lumbar spinal cords acquired by a rapid autopsy system that processed nervous systems specifically for genomic studies. ALS patients had rostral onset and caudally advancing disease and abundant residual motor neurons in this region. We created two RNA pools, one from motor neurons collected by laser capture microdissection and one from the surrounding anterior horns. From each, we isolated RNA, amplified mRNA, profiled whole-genome exon splicing, and applied advanced bioinformatics. We employed rigorous quality control measures at all steps and validated findings by qPCR. In the motor neuron enriched mRNA pool, we found two distinct cohorts of mRNA signals, most of which were up-regulated: 148 differentially expressed genes (P

Subject(s)
Alternative Splicing , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/physiopathology , Exons , Extracellular Matrix/metabolism , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cell Adhesion , Female , Gene Expression Regulation , Humans , Male , Mice , Middle Aged , Motor Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...