Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Rep Prog Phys ; 81(3): 036001, 2018 03.
Article in English | MEDLINE | ID: mdl-29293086

ABSTRACT

Modifications of Einstein's theory of gravitation have been extensively considered in the past years, in connection to both cosmology and quantum gravity. Higher-curvature and higher-derivative gravity theories constitute the main examples of such modifications. These theories exhibit, in general, more degrees of freedom than those found in standard general relativity; counting, identifying, and retrieving the description/representation of such dynamical variables is currently an open problem, and a decidedly nontrivial one. In this work we review, via both formal arguments and custom-made examples, the most relevant methods to unveil the gravitational degrees of freedom of a given model, discussing the merits, subtleties and pitfalls of the various approaches.

2.
Phys Rev Lett ; 118(13): 131101, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28409946

ABSTRACT

We present a new scenario for generating the baryon asymmetry of the Universe that is induced by a Nambu-Goldstone (NG) boson. The shift symmetry naturally controls the operators in the theory while allowing the NG boson to couple to the spacetime geometry as well as to the baryons. The cosmological background thus sources a coherent motion of the NG boson, which leads to baryogenesis. Good candidates of the baryon-generating NG boson are the QCD axion and axionlike fields. In these cases, the axion induces baryogenesis in the early Universe and can also serve as dark matter in the late Universe.

3.
Phys Rev Lett ; 116(16): 161303, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27152787

ABSTRACT

Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.

4.
Phys Rev Lett ; 112(15): 151301, 2014 Apr 18.
Article in English | MEDLINE | ID: mdl-24785026

ABSTRACT

The emergence of a classical spacetime from any quantum gravity model is still a subtle and only partially understood issue. If indeed spacetime is arising as some sort of large scale condensate of more fundamental objects, then it is natural to expect that matter, being a collective excitation of the spacetime constituents, will present modified kinematics at sufficiently high energies. We consider here the phenomenology of the dissipative effects necessarily arising in such a picture. Adopting dissipative hydrodynamics as a general framework for the description of the energy exchange between collective excitations and the spacetime fundamental degrees of freedom, we discuss how rates of energy loss for elementary particles can be derived from dispersion relations and used to provide strong constraints on the base of current astrophysical observations of high-energy particles.

5.
Phys Rev Lett ; 109(15): 151602, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-23102293

ABSTRACT

Horava-Lifshitz gravity models contain higher-order operators suppressed by a characteristic scale, which is required to be parametrically smaller than the Planck scale. We show that recomputed synchrotron radiation constraints from the Crab Nebula suffice to exclude the possibility that this scale is of the same order of magnitude as the Lorentz breaking scale in the matter sector. This highlights the need for a mechanism that suppresses the percolation of Lorentz violation in the matter sector and is effective for higher-order operators as well.

6.
Phys Rev Lett ; 108(7): 071101, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22401190

ABSTRACT

The cosmological constant is one of the most pressing problems in modern physics. We address this issue from an emergent gravity standpoint, by using an analogue gravity model. Indeed, the dynamics of the emergent metric in a Bose-Einstein condensate can be described by a Poisson-like equation with a vacuum source term reminiscent of a cosmological constant. The direct computation of this term shows that in emergent gravity scenarios this constant may be naturally much smaller than the naive ground-state energy of the emergent effective field theory. This suggests that a proper computation of the cosmological constant would require a detailed understanding about how Einstein equations emerge from the full microscopic quantum theory. In this light, the cosmological constant appears as a decisive test bench for any quantum or emergent gravity scenario.

7.
Living Rev Relativ ; 14(1): 3, 2011.
Article in English | MEDLINE | ID: mdl-28179830

ABSTRACT

Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).

8.
Phys Rev Lett ; 105(2): 021101, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20867696

ABSTRACT

The time delays between γ rays of different energies from extragalactic sources have often been used to probe quantum gravity models in which Lorentz symmetry is violated. It has been claimed that these time delays can be explained by or at least put the strongest available constraints on quantum gravity scenarios that cannot be cast within an effective field theory framework, such as the space-time foam, D-brane model. Here we show that this model would predict too many photons in the ultrahigh energy cosmic ray flux to be consistent with observations. The resulting constraints on the space-time foam model are much stronger than limits from time delays and allow for Lorentz violation effects way too small for explaining the observed time delays.

9.
Sci Am ; 301(4): 38-45, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19780451
10.
Phys Rev Lett ; 97(17): 171301, 2006 Oct 27.
Article in English | MEDLINE | ID: mdl-17155458

ABSTRACT

We discuss the issue of quasiparticle production by "analogue black holes" with particular attention paid to the possibility of reproducing Hawking radiation in a laboratory. By constructing simple geometric acoustic models, we obtain a somewhat unexpected result: We show that, in order to obtain a stationary and Planckian emission of quasiparticles, it is not necessary to create a trapped region in the acoustic spacetime (corresponding to a supersonic regime in the fluid flow). It is sufficient to set up a dynamically changing flow asymptotically approaching a sonic regime with sufficient rapidity in laboratory time. This result is generic to curved-space quantum field theory, the "analogue spacetimes" we consider providing a guide to physical intuition, and a possible route to laboratory experiments.

11.
Phys Rev Lett ; 96(15): 151301, 2006 Apr 21.
Article in English | MEDLINE | ID: mdl-16712144

ABSTRACT

Effective field theories (EFTs) have been widely used as a framework in order to place constraints on the Planck suppressed Lorentz violations predicted by various models of quantum gravity. There are, however, technical problems in the EFT framework when it comes to ensuring that small Lorentz violations remain small--this is the essence of the "naturalness" problem. Herein we present an "emergent" spacetime model, based on the "analogue gravity" program, by investigating a specific condensed-matter system. Specifically, we consider the class of two-component BECs subject to laser-induced transitions between the components, and we show that this model is an example for Lorentz invariance violation due to ultraviolet physics. Furthermore, our model explicitly avoids the naturalness problem, and makes specific suggestions regarding how to construct a physically reasonable quantum gravity phenomenology.

12.
Living Rev Relativ ; 8(1): 12, 2005.
Article in English | MEDLINE | ID: mdl-28179871

ABSTRACT

Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).

SELECTION OF CITATIONS
SEARCH DETAIL
...