Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 9(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260871

ABSTRACT

Wheat bran consumption is associated with several health benefits, but its incorporation into food products remains low because of sensory and technofunctional issues. Besides, its full beneficial potential is probably not achieved because of its recalcitrant nature and inaccessible structure. Particle size reduction can affect both technofunctional and nutrition-related properties. Therefore, in this study, wet milling and cryogenic milling, two techniques that showed potential for extreme particle size reduction, were used. The effect of the milling techniques, performed on laboratory and large scale, was evaluated on the structure and physicochemical properties of wheat bran. With a median particle size (d50) of 6 µm, the smallest particle size was achieved with cryogenic milling on a laboratory scale. Cryogenic milling on a large scale and wet milling on laboratory and large scale resulted in a particle size reduction to a d50 of 28-38 µm. In the milled samples, the wheat bran structure was broken down, and almost all cells were opened. Wet milling on laboratory and large scale resulted in bran with a more porous structure, a larger surface area and a higher capacity for binding water compared to cryogenic milling on a large scale. The extensive particle size reduction by cryogenic milling on a laboratory scale resulted in wheat bran with the highest surface area and strong water retention capacity. Endogenous enzyme activity and mechanical breakdown during the different milling procedures resulted in different extents of breakdown of starch, sucrose, ß-glucan, arabinoxylan and phytate. Therefore, the diverse impact of the milling techniques on the physicochemical properties of wheat bran could be used to target different technofunctional and health-related properties.

2.
Carbohydr Polym ; 241: 116262, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32507220

ABSTRACT

The effect of wheat bran on starch gelatinization temperature was investigated. Dynamic water vapour sorption and water retention capacity experiments showed that bran bound up to 3 times more water than starch. However, examining starch gelatinization in starch-bran-water mixtures with differential scanning calorimetry showed that the effect of substituting starch by bran differed from that of moving into a regime of limiting water. Modelling the effect of the mixture composition on starch gelatinization behavior indicated that the onset (To) and peak (Tp) gelatinization temperatures were positively impacted by the bran concentration in water. The conclusion temperature (Tc) was negatively affected by the water content. Fractionation experiments demonstrated that the increased To and Tp were mainly caused by the extractable wheat bran components, such as potassium and phosphorus, which decrease the plasticization capacity of the solvent. The mechanism behind our observations was explained with the side-chain liquid-crystalline polymeric model for starch.


Subject(s)
Dietary Fiber , Gelatin/chemistry , Starch/chemistry , Calorimetry, Differential Scanning , Temperature , Triticum , Water/chemistry
3.
Foods ; 9(6)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512729

ABSTRACT

The potential of extrusion-cooking to change the physicochemical characteristics of wheat bran, increase its nutritional value and decrease its recalcitrance towards fermentation was investigated in this study. The conditions in a twin-screw extruder were varied by changing screw configuration, moisture content and barrel temperature. The former was not previously investigated in studies on bran extrusion. Extrusion-cooking resulted in an increased water-holding capacity and extract viscosity of bran, suggesting shear-induced structure degradation and structure loosening due to steam explosion at the extruder outlet. Modelling showed that the extent of these modifications mainly correlates with the amount of specific mechanical energy (SME) input, which increases with an increasing number of work sections in the screw configuration and a decreasing moisture content and barrel temperature. Extrusion led to solubilisation of arabinoxylan and ferulic acid. Moreover, it led to starch melting and phytate degradation. Upon fermentation of the most modified sample using a human faecal inoculum, small numeric pH decreases and short-chain fatty acid production increases were observed compared to the control bran, while protein fermentation was decreased. Overall, extrusion-cooking can improve the nutrition-related properties of wheat bran, making it an interesting technique for the modification of bran before further use or consumption as an extruded end product.

4.
Food Chem ; 305: 125436, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31514047

ABSTRACT

The physicochemical properties of wheat bran have an effect on its technofunctional and nutritional profile. The possibility to induce physicochemical modifications in wheat bran using microfluidisation was investigated. An I-optimal experimental design was used to investigate the effect of microfluidisation processing parameters (pressure, number of passes, bran concentration and initial particle size) on important properties of wheat bran (particle size, microstructure, chemical composition, water retention capacity (WRC), extractability, viscosity and sedimentation). With the parameters used in this study, microfluidisation reduced wheat bran median particle size to 14.8 µm and disintegrated starch granules from the attached endosperm. This coincided with an increased extractability of starch and arabinoxylan. While the initial particle size was of minor importance, a higher pressure, larger number of passes and lower bran concentration during microfluidisation resulted in a smaller particle size, higher WRC and extractability, and an increased viscosity and stability in a 2% wheat bran suspension.


Subject(s)
Dietary Fiber/analysis , Triticum/chemistry , Endosperm/chemistry , Particle Size , Starch , Viscosity , Water , Xylans
SELECTION OF CITATIONS
SEARCH DETAIL
...