Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(5): 114190, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38717903

ABSTRACT

Neuronal morphology influences synaptic connectivity and neuronal signal processing. However, it remains unclear how neuronal shape affects steady-state distributions of organelles like mitochondria. In this work, we investigated the link between mitochondrial transport and dendrite branching patterns by combining mathematical modeling with in vivo measurements of dendrite architecture, mitochondrial motility, and mitochondrial localization patterns in Drosophila HS (horizontal system) neurons. In our model, different forms of morphological and transport scaling rules-which set the relative thicknesses of parent and daughter branches at each junction in the dendritic arbor and link mitochondrial motility to branch thickness-predict dramatically different global mitochondrial localization patterns. We show that HS dendrites obey the specific subset of scaling rules that, in our model, lead to realistic mitochondrial distributions. Moreover, we demonstrate that neuronal activity does not affect mitochondrial transport or localization, indicating that steady-state mitochondrial distributions are hard-wired by the architecture of the neuron.


Subject(s)
Dendrites , Mitochondria , Animals , Dendrites/metabolism , Mitochondria/metabolism , Drosophila melanogaster/metabolism , Drosophila/metabolism , Neurons/metabolism
2.
JACC Cardiovasc Imaging ; 17(2): 128-145, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37410010

ABSTRACT

BACKGROUND: Cardiac magnetic resonance (CMR) differentiates cardiac metastasis (CMET) and cardiac thrombus (CTHR) based on tissue characteristics stemming from vascularity on late gadolinium enhancement (LGE). Perfusion CMR can assess magnitude of vascularity; utility for cardiac masses (CMASS) is unknown. OBJECTIVES: This study sought to determine if perfusion CMR provides diagnostic and prognostic utility for CMASS beyond binary differentiation of CMET and CTHR. METHODS: The population comprised adult cancer patients with CMASS on CMR; CMET and CTHR were defined using LGE-CMR: CMASS+ patients were matched to CMASS- control subjects for cancer type/stage. First-pass perfusion CMR was interpreted visually and semiquantitatively for CMASS vascularity, including contrast enhancement ratio (CER) (plateau vs baseline) and contrast uptake rate (CUR) (slope). Follow-up was performed for all-cause mortality. RESULTS: A total of 462 cancer patients were studied, including patients with (CMET = 173, CTHR = 69) and without CMASS on LGE-CMR. On perfusion CMR, CER and CUR were higher within CMET vs CTHR (P < 0.001); CUR yielded better performance (AUC: 0.89-0.93) than CER (AUC: 0.66-0.72) (both P < 0.001) to differentiate LGE-CMR-evidenced CMET and CTHR, although both CUR (P = 0.10) and CER (P = 0.01) typically misclassified CMET with minimal enhancement. During follow-up, mortality among CMET patients was high but variable; 47% of patients were alive 1 year post-CMR. Patients with semiquantitative perfusion CMR-evidenced CMET had higher mortality than control subjects (HR: 1.42 [95% CI: 1.06-1.90]; P = 0.02), paralleling visual perfusion CMR (HR: 1.47 [95% CI: 1.12-1.94]; P = 0.006) and LGE-CMR (HR: 1.52 [95% CI: 1.16-2.00]; P = 0.003). Among patients with CMET on LGE-CMR, mortality was highest among patients (P = 0.002) with lesions in the bottom perfusion (CER) tertile, corresponding to low vascularity. Among CMET and cancer-matched control subjects, mortality was equivalent (P = NS) among patients with lesions in the upper CER tertile (corresponding to higher lesion vascularity). Conversely, patients with CMET in the middle (P = 0.03) and lowest (lowest vascularity) (P = 0.001) CER tertiles had increased mortality. CONCLUSIONS: Perfusion CMR yields prognostic utility that complements LGE-CMR: Among cancer patients with LGE-CMR defined CMET, mortality increases in proportion to magnitude of lesion hypoperfusion.


Subject(s)
Contrast Media , Heart Neoplasms , Humans , Adult , Prognosis , Predictive Value of Tests , Gadolinium , Heart Neoplasms/diagnostic imaging , Magnetic Resonance Spectroscopy , Perfusion , Risk Assessment , Magnetic Resonance Imaging, Cine
SELECTION OF CITATIONS
SEARCH DETAIL
...