Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Nature ; 604(7904): 98-103, 2022 04.
Article in English | MEDLINE | ID: mdl-35355012

ABSTRACT

Neural activity in the hippocampus is known to reflect how animals move through an environment1,2. Although navigational behaviour may show considerable stability3-6, the tuning stability of individual hippocampal neurons remains unclear7-12. Here we used wireless calcium imaging to longitudinally monitor the activity of dorsal CA1 hippocampal neurons in freely flying bats performing highly reproducible flights in a familiar environment. We find that both the participation and the spatial selectivity of most neurons remain stable over days and weeks. We also find that apparent changes in tuning can be largely attributed to variations in the flight behaviour of the bats. Finally, we show that bats navigating in the same environment under different room lighting conditions (lights on versus lights off) exhibit substantial changes in flight behaviour that can give the illusion of neuronal instability. However, when similar flight paths are compared across conditions, the stability of the hippocampal code persists. Taken together, we show that the underlying hippocampal code is highly stable over days and across contexts if behaviour is taken into account.


Subject(s)
CA1 Region, Hippocampal , Chiroptera , Neurons , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Calcium , Chiroptera/physiology , Flight, Animal/physiology , Lighting , Neurons/physiology , Spatial Navigation/physiology
3.
Cell Rep ; 35(6): 109092, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33979629

ABSTRACT

Alveolar epithelial type 2 (AT2) cells integrate signals from multiple molecular pathways to proliferate and differentiate to drive regeneration of the lung alveolus. Utilizing in vivo genetic and ex vivo organoid models, we investigated the role of Fgfr2 signaling in AT2 cells across the lifespan and during adult regeneration after influenza infection. We show that, although dispensable for adult homeostasis, Fgfr2 restricts AT2 cell fate during postnatal lung development. Using an unbiased computational imaging approach, we demonstrate that Fgfr2 promotes AT2 cell proliferation and restrains differentiation in actively regenerating areas after injury. Organoid assays reveal that Fgfr2-deficient AT2 cells remain competent to respond to multiple parallel proliferative inputs. Moreover, genetic blockade of AT2 cell cytokinesis demonstrates that cell division and differentiation are uncoupled during alveolar regeneration. These data reveal that Fgfr2 maintains AT2 cell fate, balancing proliferation and differentiation during lung alveolar regeneration.


Subject(s)
Acute Lung Injury/physiopathology , Alveolar Epithelial Cells/metabolism , Lung/pathology , Animals , Cell Proliferation , Humans , Mice
4.
Nature ; 582(7813): 539-544, 2020 06.
Article in English | MEDLINE | ID: mdl-32555461

ABSTRACT

Coordinated skills such as speech or dance involve sequences of actions that follow syntactic rules in which transitions between elements depend on the identities and order of past actions. Canary songs consist of repeated syllables called phrases, and the ordering of these phrases follows long-range rules1 in which the choice of what to sing depends on the song structure many seconds prior. The neural substrates that support these long-range correlations are unknown. Here, using miniature head-mounted microscopes and cell-type-specific genetic tools, we observed neural activity in the premotor nucleus HVC2-4 as canaries explored various phrase sequences in their repertoire. We identified neurons that encode past transitions, extending over four phrases and spanning up to four seconds and forty syllables. These neurons preferentially encode past actions rather than future actions, can reflect more than one song history, and are active mostly during the rare phrases that involve history-dependent transitions in song. These findings demonstrate that the dynamics of HVC include 'hidden states' that are not reflected in ongoing behaviour but rather carry information about prior actions. These states provide a possible substrate for the control of syntax transitions governed by long-range rules.


Subject(s)
Canaries/physiology , Neurons/physiology , Singing/physiology , Vocalization, Animal/physiology , Animals , Brain/anatomy & histology , Brain/cytology , Brain/physiology , Canaries/anatomy & histology , Canaries/genetics , Male , Models, Neurological , Psycholinguistics , Time Factors
5.
J Neural Eng ; 14(4): 045001, 2017 08.
Article in English | MEDLINE | ID: mdl-28514229

ABSTRACT

OBJECTIVE: Fluorescence imaging through head-mounted microscopes in freely behaving animals is becoming a standard method to study neural circuit function. Flexible, open-source designs are needed to spur evolution of the method. APPROACH: We describe a miniature microscope for single-photon fluorescence imaging in freely behaving animals. The device is made from 3D printed parts and off-the-shelf components. These microscopes weigh less than 1.8 g, can be configured to image a variety of fluorophores, and can be used wirelessly or in conjunction with active commutators. Microscope control software, based in Swift for macOS, provides low-latency image processing capabilities for closed-loop, or BMI, experiments. MAIN RESULTS: Miniature microscopes were deployed in the songbird premotor region HVC (used as a proper name), in singing zebra finches. Individual neurons yield temporally precise patterns of calcium activity that are consistent over repeated renditions of song. Several cells were tracked over timescales of weeks and months, providing an opportunity to study learning related changes in HVC. SIGNIFICANCE: 3D printed miniature microscopes, composed completely of consumer grade components, are a cost-effective, modular option for head-mounting imaging. These easily constructed and customizable tools provide access to cell-type specific neural ensembles over timescales of weeks.


Subject(s)
Equipment Design/instrumentation , Miniaturization/instrumentation , Software Design , Wireless Technology/instrumentation , Acoustic Stimulation/methods , Animals , Equipment Design/methods , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Miniaturization/methods , Neurons/physiology , Songbirds
6.
Nat Neurosci ; 19(12): 1665-1671, 2016 12.
Article in English | MEDLINE | ID: mdl-27723744

ABSTRACT

Motor skills can be maintained for decades, but the biological basis of this memory persistence remains largely unknown. The zebra finch, for example, sings a highly stereotyped song that is stable for years, but it is not known whether the precise neural patterns underlying song are stable or shift from day to day. Here we demonstrate that the population of projection neurons coding for song in the premotor nucleus, HVC, change from day to day. The most dramatic shifts occur over intervals of sleep. In contrast to the transient participation of excitatory neurons, ensemble measurements dominated by inhibition persist unchanged even after damage to downstream motor nerves. These observations offer a principle of motor stability: spatiotemporal patterns of inhibition can maintain a stable scaffold for motor dynamics while the population of principal neurons that directly drive behavior shift from one day to the next.


Subject(s)
Action Potentials/physiology , Neural Pathways/physiology , Neurons/physiology , Sleep/physiology , Vocalization, Animal/physiology , Animals , Finches/physiology , Male
7.
PLoS Biol ; 13(6): e1002158, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26039895

ABSTRACT

Time-locked sequences of neural activity can be found throughout the vertebrate forebrain in various species and behavioral contexts. From "time cells" in the hippocampus of rodents to cortical activity controlling movement, temporal sequence generation is integral to many forms of learned behavior. However, the mechanisms underlying sequence generation are not well known. Here, we describe a spatial and temporal organization of the songbird premotor cortical microcircuit that supports sparse sequences of neural activity. Multi-channel electrophysiology and calcium imaging reveal that neural activity in premotor cortex is correlated with a length scale of 100 µm. Within this length scale, basal-ganglia-projecting excitatory neurons, on average, fire at a specific phase of a local 30 Hz network rhythm. These results show that premotor cortical activity is inhomogeneous in time and space, and that a mesoscopic dynamical pattern underlies the generation of the neural sequences controlling song.


Subject(s)
Finches/physiology , Motor Cortex/physiology , Vocalization, Animal/physiology , Animals , Male , Motor Cortex/anatomy & histology , Neurons/physiology
8.
J Neural Eng ; 10(4): 046016, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23860226

ABSTRACT

OBJECTIVE: Chronic neural recording in behaving animals is an essential method for studies of neural circuit function. However, stable recordings from small, densely packed neurons remains challenging, particularly over time-scales relevant for learning. APPROACH: We describe an assembly method for a 16-channel electrode array consisting of carbon fibers (<5 µm diameter) individually insulated with Parylene-C and fire-sharpened. The diameter of the array is approximately 26 µm along the full extent of the implant. MAIN RESULTS: Carbon fiber arrays were tested in HVC (used as a proper name), a song motor nucleus, of singing zebra finches where individual neurons discharge with temporally precise patterns. Previous reports of activity in this population of neurons have required the use of high impedance electrodes on movable microdrives. Here, the carbon fiber electrodes provided stable multi-unit recordings over time-scales of months. Spike-sorting indicated that the multi-unit signals were dominated by one, or a small number of cells. Stable firing patterns during singing confirmed the stability of these clusters over time-scales of months. In addition, from a total of 10 surgeries, 16 projection neurons were found. This cell type is characterized by sparse stereotyped firing patterns, providing unambiguous confirmation of single cell recordings. SIGNIFICANCE: Carbon fiber electrode bundles may provide a scalable solution for long-term neural recordings of densely packed neurons.


Subject(s)
Action Potentials/physiology , Biocompatible Materials/chemistry , Carbon/chemistry , Electrodes, Implanted , Finches/physiology , Motor Cortex/physiology , Vocalization, Animal/physiology , Animals , Carbon Fiber , Electric Impedance , Equipment Design , Equipment Failure Analysis , Microarray Analysis/instrumentation , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...