Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 629(8011): 410-416, 2024 May.
Article in English | MEDLINE | ID: mdl-38632404

ABSTRACT

Bacteria have adapted to phage predation by evolving a vast assortment of defence systems1. Although anti-phage immunity genes can be identified using bioinformatic tools, the discovery of novel systems is restricted to the available prokaryotic sequence data2. Here, to overcome this limitation, we infected Escherichia coli carrying a soil metagenomic DNA library3 with the lytic coliphage T4 to isolate clones carrying protective genes. Following this approach, we identified Brig1, a DNA glycosylase that excises α-glucosyl-hydroxymethylcytosine nucleobases from the bacteriophage T4 genome to generate abasic sites and inhibit viral replication. Brig1 homologues that provide immunity against T-even phages are present in multiple phage defence loci across distinct clades of bacteria. Our study highlights the benefits of screening unsequenced DNA and reveals prokaryotic DNA glycosylases as important players in the bacteria-phage arms race.


Subject(s)
Bacteria , Bacteriophage T4 , DNA Glycosylases , Bacteria/classification , Bacteria/enzymology , Bacteria/genetics , Bacteria/immunology , Bacteria/virology , Bacteriophage T4/growth & development , Bacteriophage T4/immunology , Bacteriophage T4/metabolism , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , Escherichia coli/genetics , Escherichia coli/virology , Gene Library , Metagenomics/methods , Soil Microbiology , Virus Replication
2.
Nat Biotechnol ; 41(5): 626-630, 2023 05.
Article in English | MEDLINE | ID: mdl-36411313

ABSTRACT

The capture of metagenomic DNA in large clone libraries provides the opportunity to study microbial diversity that is inaccessible using culture-dependent methods. In this study, we harnessed nuclease-deficient Cas9 to establish a CRISPR counter-selection interruption circuit (CCIC) that can be used to retrieve target clones from complex libraries. Combining modern sequencing methods with CCIC cloning allows for rapid physical access to the genetic diversity present in natural ecosystems.


Subject(s)
Ecosystem , Metagenomics , Clone Cells
3.
J Vis Exp ; (109)2016 Mar 20.
Article in English | MEDLINE | ID: mdl-27023729

ABSTRACT

RNA-mediated knockdowns are widely used to control gene expression. This versatile family of techniques makes use of short RNA (sRNA) that can be synthesized with any sequence and designed to complement any gene targeted for silencing. Because sRNA constructs can be introduced to many cell types directly or using a variety of vectors, gene expression can be repressed in living cells without laborious genetic modification. The most common RNA knockdown technology, RNA interference (RNAi), makes use of the endogenous RNA-induced silencing complex (RISC) to mediate sequence recognition and cleavage of the target mRNA. Applications of this technique are therefore limited to RISC-expressing organisms, primarily eukaryotes. Recently, a new generation of RNA biotechnologists have developed alternative mechanisms for controlling gene expression through RNA, and so made possible RNA-mediated gene knockdowns in bacteria. Here we describe a method for silencing gene expression in E. coli that functionally resembles RNAi. In this system a synthetic phagemid is designed to express sRNA, which may designed to target any sequence. The expression construct is delivered to a population of E. coli cells with non-lytic M13 phage, after which it is able to stably replicate as a plasmid. Antisense recognition and silencing of the target mRNA is mediated by the Hfq protein, endogenous to E. coli. This protocol includes methods for designing the antisense sRNA, constructing the phagemid vector, packaging the phagemid into M13 bacteriophage, preparing a live cell population for infection, and performing the infection itself. The fluorescent protein mKate2 and the antibiotic resistance gene chloramphenicol acetyltransferase (CAT) are targeted to generate representative data and to quantify knockdown effectiveness.


Subject(s)
Bacteriophage M13/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/genetics , Gene Knockdown Techniques , RNA Interference , RNA, Small Untranslated/genetics , Gene Silencing , Genetic Vectors , Plasmids , RNA, Antisense , RNA, Messenger/genetics
4.
ACS Synth Biol ; 3(12): 1003-6, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25524110

ABSTRACT

In response to emergent antibiotic resistance, new strategies are needed to enhance the effectiveness of existing antibiotics. Here, we describe a phagemid-delivered, RNA-mediated system capable of directly knocking down antibiotic resistance phenotypes. Small regulatory RNAs (sRNAs) were designed to specifically inhibit translation of chloramphenicol acetyltransferase and kanamycin phosphotransferase. Nonlytic phagemids coding for sRNA expression were able to infect and restore chloramphenicol and kanamycin sensitivity to populations of otherwise resistant E. coli. This modular system could easily be extended to other bacteria with resistance profiles that depend on specific transcripts.


Subject(s)
Bacteriophages/genetics , Drug Resistance, Microbial/genetics , Escherichia coli/genetics , Gene Silencing , RNA, Viral , Drug Resistance, Microbial/drug effects , Escherichia coli/drug effects , Escherichia coli/metabolism , Genetic Engineering , RNA, Viral/genetics , RNA, Viral/pharmacology
5.
ACS Synth Biol ; 3(12): 932-4, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25408994

ABSTRACT

The emergence of extremely drug resistant Mycobacterium tuberculosis necessitates new strategies to combat the pathogen. Engineered bacteria may serve as vectors to deliver proteins to human cells, including mycobacteria-infected macrophages. In this work, we target Mycobacterium smegmatis, a nonpathogenic tuberculosis model, with E. coli modified to express trehalose dimycolate hydrolase (TDMH), a membrane-lysing serine esterase. We show that TDMH-expressing E. coli are capable of lysing mycobacteria in vitro and at low pH. Vectorized E. coli producing TDMH were found suppress the proliferation of mycobacteria in infected macrophages.


Subject(s)
Bioengineering/methods , Escherichia coli/metabolism , Esterases/genetics , Genetic Vectors/genetics , Mycobacterium smegmatis/metabolism , Cells, Cultured , Escherichia coli/genetics , Esterases/metabolism , Genetic Vectors/metabolism , Humans , Macrophages/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...