Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Open ; 8(7)2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31345790

ABSTRACT

High quality cell cultures require reliable laboratory practices. Today's small-scale in vitro cell culture format is dominated by circular topology vessels, with the inherent disadvantage of secondary flow induced each time the cell cultures are repositioned. The secondary flow generates uneven sedimentation and adherence that negatively impacts cell culture quality. Here we show a modification of the circular culture vessel that abrogates these disturbances. Cell culture wells were augmented with a central column to diminish secondary flow. Human carcinoma cell lines (BeWo, JEG-3), mesenchymal stem cells [human umbilical cord perivascular cells (HUCPVC)] and mouse embryonic fibroblasts (MEF) were cultured in both column-augmented and regular culture wells. Human carcinoma cell cultures showed even cell densities and significantly more viable cells in column-augmented vessels. In FTM HUCPVC cultures, cell surface MSC marker (CD90, CD105) expression and cell differentiation-related gene expression patterns were significantly more homogeneous in column-augmented vessels. MEF cells in column-augmented culture vessels showed a more consistent expression of IGF-1. Column-augmented cell culture vessels significantly improve the homogeneity of adherent cell cultures by mitigating the adverse effect of the secondary flow.This article has an associated First Person interview with the first author of the paper.

2.
Stem Cell Res Ther ; 8(1): 184, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28807010

ABSTRACT

BACKGROUND: Due to limitations of current angiogenesis assays, we aimed to develop a novel application of the rat aortic ring assay to assess the angiogenic potential of mesenchymal stromal cells (MSCs). First-trimester human umbilical cord-derived perivascular cells (FTM HUCPVCs) have multipotent characteristics and previously demonstrated angiogenic potential. We compared the effect of this young source of MSCs and adult bone marrow stromal cells (BMSCs) on ex vivo aortic endothelial network formation. METHODS: Thoracic segments of adult rat aortas were isolated, sectioned and embedded into Matrigel™. Fluorophore-labeled FTM HUCPVC lines and BMSCs (N = 3) were cocultured with developing endothelial networks (day 0). MSC integration, tube formation and endothelial network growth were monitored daily using phase-contrast and fluorescence microscopy. Quantification of endothelial networks was performed using ImageJ network analysis software on day 5 of coculture. RESULTS: FTM HUCPVCs from two umbilical cord samples migrated toward and integrated with developing aortic ring tubular networks while displaying elongated morphologies (day 1). In contrast, BMSCs did not show targeted migration and maintained spherical morphologies with limited physical interactions. Within 1 week of coculture, FTM HUCPVC lines contributed to significantly greater radial network growth and network loop formation when compared to BMSCs and untreated networks. CONCLUSIONS: We have developed a novel potency assay to assess the angiogenic potential of cell therapy candidates. Favorable properties of FTM HUCPVCs over BMSCs that we observed with this assay and which merit further study include chemotaxis, affinity for developing vasculature, and physical supportive interactions contributing to the development of endothelial networks.


Subject(s)
Aorta/physiology , Biological Assay/methods , Cell- and Tissue-Based Therapy , Neovascularization, Physiologic , Animals , Cell Movement , Cell Shape , Coculture Techniques , Endothelial Cells/cytology , Female , Humans , In Vitro Techniques , Mesenchymal Stem Cells/cytology , Microscopy, Fluorescence , Pericytes/cytology , Rats, Sprague-Dawley , Umbilical Cord/cytology
3.
Stem Cells Int ; 2016: 7513252, 2016.
Article in English | MEDLINE | ID: mdl-27123009

ABSTRACT

Myocardial infarction (MI) causes an extensive loss of heart muscle cells and leads to congestive heart disease (CAD), the leading cause of mortality and morbidity worldwide. Mesenchymal stromal cell- (MSC-) based cell therapy is a promising option to replace invasive interventions. However the optimal cell type providing significant cardiac regeneration after MI is yet to be found. The aim of our study was to investigate the cardiomyogenic differentiation potential of first trimester human umbilical cord perivascular cells (FTM HUCPVCs), a novel, young source of immunoprivileged mesenchymal stromal cells. Based on the expression of cardiomyocyte markers (cTnT, MYH6, SIRPA, and CX43) FTM and term HUCPVCs achieved significantly increased cardiomyogenic differentiation compared to bone marrow MSCs, while their immunogenicity remained significantly lower as indicated by HLA-A and HLA-G expression and susceptibility to T cell mediated cytotoxicity. When applying aggregate-based differentiation, FTM HUCPVCs showed increased aggregate formation potential and generated contracting cells within 1 week of coculture, making them the first MSC type with this ability. Our results indicate that young FTM HUCPVCs have superior cardiomyogenic potential coupled with beneficial immunogenic properties when compared to MSCs of older tissue sources, suggesting that in vitro predifferentiation could be a potential strategy to increase their effectiveness in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL
...