Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37961628

ABSTRACT

Genomic structural variations (SVs) and transposable elements (TEs) can be significant contributors to genome evolution, altered gene expression, and risk of genetic diseases. Recent advancements in long-read sequencing have greatly improved the quality of de novo genome assemblies and enhanced the detection of sequence variants at the scale of hundreds or thousands of bases. Comparisons between two diverged wild isolates of Caenorhabditis elegans, the Bristol and Hawaiian strains, have been widely utilized in the analysis of small genetic variations. Genetic drift, including SVs and rearrangements of repeated sequences such as TEs, can occur over time from long-term maintenance of wild type isolates within the laboratory. To comprehensively detect both large and small structural variations as well as TEs due to genetic drift, we generated de novo genome assemblies and annotations for each strain from our lab collection using both long- and short-read sequencing and compared our assemblies and annotations with that of other lab wild type strains. Within our lab assemblies, we annotate over 3.1Mb of sequence divergence between the Bristol and Hawaiian isolates: 337,584 SNPs, 94,503 small insertion-deletions (<50bp), and 4,334 structural variations (>50bp). Further, we define the location and movement of specific DNA TEs between N2 Bristol and CB4856 Hawaiian wild type isolates. Specifically, we find the N2 Bristol genome has 20.6% more TEs from the Tc1/mariner family than the CB4856 Hawaiian genome. Moreover, we identified Zator elements as the most abundant and mobile TE family in the genome. Using specific TE sequences with unique SNPs, we also identify 38 TEs that moved intrachromosomally and 9 TEs that moved interchromosomally between the N2 Bristol and CB4856 Hawaiian genomes. By comparing the de novo genome assembly of our lab collection Bristol isolate to the VC2010 Bristol assembly, we also reveal that lab lineages display over 2 Mb of total variation: 1,162 SNPs, 1,528 indels, and 897 SVs with 95% of the variation due to SVs. Overall, our work demonstrates the unique contribution of SVs and TEs to variation and genetic drift between wild type laboratory strains assumed to be isogenic despite growing evidence of genetic drift and phenotypic variation.

2.
Elife ; 122023 10 05.
Article in English | MEDLINE | ID: mdl-37796106

ABSTRACT

In sexually reproducing organisms, germ cells faithfully transmit the genome to the next generation by forming haploid gametes, such as eggs and sperm. Although most meiotic proteins are conserved between eggs and sperm, many aspects of meiosis are sexually dimorphic, including the regulation of recombination. The synaptonemal complex (SC), a large ladder-like structure that forms between homologous chromosomes, is essential for regulating meiotic chromosome organization and promoting recombination. To assess whether sex-specific differences in the SC underpin sexually dimorphic aspects of meiosis, we examined Caenorhabditis elegans SC central region proteins (known as SYP proteins) in oogenesis and spermatogenesis and uncovered sex-specific roles for the SYPs in regulating meiotic recombination. We find that SC composition, specifically SYP-2, SYP-3, SYP-5, and SYP-6, is regulated by sex-specific mechanisms throughout meiotic prophase I. During pachytene, both oocytes and spermatocytes differentially regulate the stability of SYP-2 and SYP-3 within an assembled SC. Further, we uncover that the relative amount of SYP-2 and SYP-3 within the SC is independently regulated in both a sex-specific and a recombination-dependent manner. Specifically, we find that SYP-2 regulates the early steps of recombination in both sexes, while SYP-3 controls the timing and positioning of crossover recombination events across the genomic landscape in only oocytes. Finally, we find that SYP-2 and SYP-3 dosage can influence the composition of the other SYPs in the SC via sex-specific mechanisms during pachytene. Taken together, we demonstrate dosage-dependent regulation of individual SC components with sex-specific functions in recombination. These sexual dimorphic features of the SC provide insights into how spermatogenesis and oogenesis adapted similar chromosome structures to differentially regulate and execute recombination.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Female , Male , Caenorhabditis elegans/metabolism , Synaptonemal Complex/metabolism , Meiosis , Semen/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism
3.
Development ; 150(19)2023 10 01.
Article in English | MEDLINE | ID: mdl-37756590

ABSTRACT

Successful nuclear migration through constricted spaces between cells or in the extracellular matrix relies on the ability of the nucleus to deform. Little is known about how this takes place in vivo. We have studied confined nuclear migration in Caenorhabditis elegans larval P cells, which is mediated by the LINC complex to pull nuclei towards the minus ends of microtubules. Null mutations of the LINC component unc-84 lead to a temperature-dependent phenotype, suggesting a parallel pathway for P-cell nuclear migration. A forward genetic screen for enhancers of unc-84 identified cgef-1 (CDC-42 guanine nucleotide exchange factor). Knockdown of CDC-42 in the absence of the LINC complex led to a P-cell nuclear migration defect. Expression of constitutively active CDC-42 partially rescued nuclear migration in cgef-1; unc-84 double mutants, suggesting that CDC-42 functions downstream of CGEF-1. The Arp2/3 complex and non-muscle myosin II (NMY-2) were also found to function parallel to the LINC pathway. In our model, CGEF-1 activates CDC-42, which induces actin polymerization through the Arp2/3 complex to deform the nucleus during nuclear migration, and NMY-2 helps to push the nucleus through confined spaces.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Actins/metabolism , Cell Nucleus/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Nuclear Envelope/metabolism
4.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-36660421

ABSTRACT

Nascent crossover sites in C. elegans meiocytes can be cytologically detected using epitope-tagged versions of the pro-crossover protein COSA-1. In spermatocytes, differences exist between cytologically-detected and genetically-detected double crossover rates. Here, we examine nascent crossovers using both GFP- and OLLAS-tagged COSA-1. Similar to previous work, we find that most late pachytene spermatocytes display 5 COSA-1 foci, indicating one crossover per autosome bivalent. However, we detected more nuclei with >5 COSA-1 foci using OLLAS::COSA-1, reflecting some bivalents having 2 COSA-1 foci. These results demonstrate tag-specific differences in the detection of COSA-1 marked nascent crossovers in spermatocytes.

5.
PLoS Genet ; 18(11): e1010282, 2022 11.
Article in English | MEDLINE | ID: mdl-36342909

ABSTRACT

Female reproductive aging is associated with decreased oocyte quality and fertility. The nematode Caenorhabditis elegans is a powerful system for understanding the biology of aging and exhibits age-related reproductive defects that are analogous to those observed in many mammals, including dysregulation of DNA repair. C. elegans germline function is influenced simultaneously by both reproductive aging and signals triggered by limited supplies of sperm, which are depleted over chronological time. To delineate the causes of DNA repair defects in aged C. elegans germlines, we assessed both DNA double strand break (DSB) induction and repair during meiotic prophase I progression in aged germlines which were depleted of self-sperm, mated, or never exposed to sperm. We find that germline DSB induction is dramatically reduced only in hermaphrodites which have exhausted their endogenous sperm, suggesting that a signal due specifically to sperm depletion downregulates DSB formation. We also find that DSB repair is delayed in aged germlines regardless of whether hermaphrodites had either a reduction in sperm supply or an inability to endogenously produce sperm. These results demonstrate that in contrast to DSB induction, DSB repair defects are a feature of C. elegans reproductive aging independent of sperm presence. Finally, we demonstrate that the E2 ubiquitin-conjugating enzyme variant UEV-2 is required for efficient DSB repair specifically in young germlines, implicating UEV-2 in the regulation of DNA repair during reproductive aging. In summary, our study demonstrates that DNA repair defects are a feature of C. elegans reproductive aging and uncovers parallel mechanisms regulating efficient DSB formation in the germline.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Male , Female , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Meiosis , DNA Breaks, Double-Stranded , Semen , Germ Cells , DNA Repair/genetics , Spermatozoa , Aging/genetics , Mammals
6.
G3 (Bethesda) ; 11(11)2021 10 19.
Article in English | MEDLINE | ID: mdl-34534266

ABSTRACT

The visualization of biological processes using fluorescent proteins and dyes in living organisms has enabled numerous scientific discoveries. The nematode Caenorhabditis elegans is a widely used model organism for live imaging studies since the transparent nature of the worm enables imaging of nearly all tissues within a whole, intact animal. While current techniques are optimized to enable the immobilization of hermaphrodite worms for live imaging, many of these approaches fail to successfully restrain the smaller male worms. To enable live imaging of worms of both sexes, we developed a new genetic, conditional immobilization tool that uses the auxin-inducible degron (AID) system to immobilize both adult and larval hermaphrodite and male worms for live imaging. Based on chromosome location, mutant phenotype, and predicted germline consequence, we identified and AID-tagged three candidate genes (unc-18, unc-104, and unc-52). Strains with these AID-tagged genes were placed on auxin and tested for mobility and germline defects. Among the candidate genes, auxin-mediated depletion of UNC-18 caused significant immobilization of both hermaphrodite and male worms that was also partially reversible upon removal from auxin. Notably, we found that male worms require a higher concentration of auxin for a similar amount of immobilization as hermaphrodites, thereby suggesting a potential sex-specific difference in auxin absorption and/or processing. In both males and hermaphrodites, depletion of UNC-18 did not largely alter fertility, germline progression, nor meiotic recombination. Finally, we demonstrate that this new genetic tool can successfully immobilize both sexes enabling live imaging studies of sexually dimorphic features in C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Female , Germ Cells , Indoleacetic Acids , Male , Meiosis
7.
STAR Protoc ; 2(3): 100801, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34527958

ABSTRACT

Accurate repair of DNA double-strand breaks (DSBs) in developing germ cells is critical to promote proper chromosome segregation and to maintain genome integrity. To directly detect homolog-independent (intersister/intrachromatid) meiotic DSB repair, we exploited the genetics and germline physiology of C. elegans to (1) induce a single DSB in nuclei across discrete stages of meiotic prophase I; (2) detect repair of that DSB as a homolog-independent crossover or noncrossover; and (3) sequence the resultant product to assess mechanisms of recombination. For complete details on the use and execution of this protocol, please refer to Toraason et al. (2021).


Subject(s)
Chromatids , Crossing Over, Genetic/genetics , DNA Repair/genetics , Meiotic Prophase I/genetics , Molecular Biology/methods , Animals , Caenorhabditis elegans/genetics , Chromatids/chemistry , Chromatids/genetics , Chromatids/metabolism , Chromosome Segregation/genetics , DNA Breaks, Double-Stranded
8.
Genetics ; 217(3)2021 03 31.
Article in English | MEDLINE | ID: mdl-33772283

ABSTRACT

Arranged in a spatial-temporal gradient for germ cell development, the adult germline of Caenorhabditis elegans is an excellent system for understanding the generation, differentiation, function, and maintenance of germ cells. Imaging whole C. elegans germlines along the distal-proximal axis enables powerful cytological analyses of germ cell nuclei as they progress from the pre-meiotic tip through all the stages of meiotic prophase I. To enable high-content image analysis of whole C. elegans gonads, we developed a custom algorithm and pipelines to function with image processing software that enables: (1) quantification of cytological features at single nucleus resolution from immunofluorescence images; and (2) assessment of these individual nuclei based on their position within the germline. We show the capability of our quantitative image analysis approach by analyzing multiple cytological features of meiotic nuclei in whole C. elegans germlines. First, we quantify double-strand DNA breaks (DSBs) per nucleus by analyzing DNA-associated foci of the recombinase RAD-51 at single-nucleus resolution in the context of whole germline progression. Second, we quantify the DSBs that are licensed for crossover repair by analyzing foci of MSH-5 and COSA-1 when they associate with the synaptonemal complex during meiotic prophase progression. Finally, we quantify P-granule composition across the whole germline by analyzing the colocalization of PGL-1 and ZNFX-1 foci. Our image analysis pipeline is an adaptable and useful method for researchers spanning multiple fields using the C. elegans germline as a model system.


Subject(s)
Germ Cells/metabolism , Gonads/cytology , Image Processing, Computer-Assisted/methods , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , DNA Breaks, Double-Stranded , DNA-Binding Proteins/metabolism , Germ Cells/cytology , Gonads/metabolism , Meiosis , Microscopy, Fluorescence/methods , Rad51 Recombinase/metabolism
9.
Curr Biol ; 31(7): 1508-1514.e5, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33740427

ABSTRACT

During meiosis, the maintenance of genome integrity is critical for generating viable haploid gametes.1 In meiotic prophase I, double-strand DNA breaks (DSBs) are induced and a subset of these DSBs are repaired as interhomolog crossovers to ensure proper chromosome segregation. DSBs not resolved as crossovers with the homolog must be repaired by other pathways to ensure genome integrity.2 To determine if alternative repair templates can be engaged for meiotic DSB repair during oogenesis, we developed an assay to detect sister and/or intra-chromatid repair events at a defined DSB site during Caenorhabditis elegans meiosis. Using this assay, we directly demonstrate that the sister chromatid or the same DNA molecule can be engaged as a meiotic repair template for both crossover and noncrossover recombination, with noncrossover events being the predominant recombination outcome. We additionally find that the sister or intra-chromatid substrate is available as a recombination partner for DSBs induced throughout meiotic prophase I, including late prophase when the homolog is unavailable. Analysis of noncrossover conversion tract sequences reveals that DSBs are processed similarly throughout prophase I. We further present data indicating that the XPF-1 nuclease functions in late prophase to promote sister or intra-chromatid repair at steps of recombination following joint molecule processing. Despite its function in sister or intra-chromatid repair, we find that xpf-1 mutants do not exhibit severe defects in progeny viability following exposure to ionizing radiation. Overall, we propose that C. elegans XPF-1 may assist as an intersister or intrachromatid resolvase only in late prophase I.


Subject(s)
Caenorhabditis elegans , DNA Repair , Meiosis , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins , Chromatids/genetics , DNA Breaks, Double-Stranded , DNA Helicases , Meiosis/genetics
10.
Curr Biol ; 30(24): 5007-5017.e4, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33065011

ABSTRACT

Sexually reproducing organisms use meiosis to generate haploid gametes and faithfully transmit their genome to the next generation. In comparison to oogenesis in many organisms, spermatogenesis is particularly sensitive to small temperature fluctuations, and spermatocytes must develop within a very narrow isotherm [1-4]. Although failure to thermoregulate spermatogenetic tissue and prolonged exposure to elevated temperatures are linked to male infertility in several organisms, the mechanisms of temperature-induced male infertility have not been fully elucidated [5]. Here, we show that upon exposure to a brief 2°C temperature increase, Caenorhabditis elegans spermatocytes exhibit up to a 25-fold increase in double-strand DNA breaks (DSBs) throughout meiotic prophase I and a concurrent reduction in male fertility. We demonstrate that these heat-induced DSBs in spermatocytes are independent of the endonuclease SPO-11. Further, we find that the production of these heat-induced DSBs in spermatocytes correlate with heat-induced mobilization of Tc1/mariner transposable elements, which are known to cause DSBs and alter genome integrity [6, 7]. Moreover, we define the specific sequences and regions of the male genome that preferentially experience these heat-induced de novo Tc1 insertions. In contrast, oocytes do not exhibit changes in DSB formation or Tc1 transposon mobility upon temperature increases. Taken together, our data suggest spermatocytes are less tolerant of higher temperatures because of an inability to effectively repress the movement of specific mobile DNA elements that cause excessive DNA damage and genome alterations, which can impair fertility.


Subject(s)
Caenorhabditis elegans/physiology , DNA Transposable Elements/genetics , Heat-Shock Response/genetics , Spermatocytes/growth & development , Spermatogenesis/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , DNA Breaks, Double-Stranded , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Fertility/genetics , Hot Temperature/adverse effects , Male , Oocytes/physiology , Spermatocytes/enzymology , Transposases/genetics , Transposases/metabolism
11.
PLoS Genet ; 16(9): e1009001, 2020 09.
Article in English | MEDLINE | ID: mdl-32886661

ABSTRACT

During meiosis, diploid organisms reduce their chromosome number by half to generate haploid gametes. This process depends on the repair of double strand DNA breaks as crossover recombination events between homologous chromosomes, which hold homologs together to ensure their proper segregation to opposite spindle poles during the first meiotic division. Although most organisms are limited in the number of crossovers between homologs by a phenomenon called crossover interference, the consequences of excess interfering crossovers on meiotic chromosome segregation are not well known. Here we show that extra interfering crossovers lead to a range of meiotic defects and we uncover mechanisms that counteract these errors. Using chromosomes that exhibit a high frequency of supernumerary crossovers in Caenorhabditis elegans, we find that essential chromosomal structures are mispatterned in the presence of multiple crossovers, subjecting chromosomes to improper spindle forces and leading to defects in metaphase alignment. Additionally, the chromosomes with extra interfering crossovers often exhibited segregation defects in anaphase I, with a high incidence of chromatin bridges that sometimes created a tether between the chromosome and the first polar body. However, these anaphase I bridges were often able to resolve in a LEM-3 nuclease dependent manner, and chromosome tethers that persisted were frequently resolved during Meiosis II by a second mechanism that preferentially segregates the tethered sister chromatid into the polar body. Altogether these findings demonstrate that excess interfering crossovers can severely impact chromosome patterning and segregation, highlighting the importance of limiting the number of recombination events between homologous chromosomes for the proper execution of meiosis.


Subject(s)
Chromosome Segregation/genetics , Crossing Over, Genetic/genetics , Meiosis/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Chromatids/genetics , Chromatin/genetics , Chromosome Positioning/genetics , Chromosomes/genetics , DNA Breaks, Double-Stranded , Endodeoxyribonucleases/genetics , Recombination, Genetic
12.
Genetics ; 213(2): 395-409, 2019 10.
Article in English | MEDLINE | ID: mdl-31431470

ABSTRACT

Crossovers (COs) between homologous chromosomes are critical for meiotic chromosome segregation and form in the context of the synaptonemal complex (SC), a meiosis-specific structure that assembles between aligned homologs. During Caenorhabditis elegans meiosis, central region components of the SC (SYP proteins) are essential to repair double-strand DNA breaks (DSBs) as COs. Here, we investigate the relationships between the SYP proteins and conserved pro-CO factors by examining the immunolocalization of these proteins in meiotic mutants where SYP proteins are absent, reduced, or mislocalized. Although COs do not form in syp null mutants, pro-CO factors COSA-1, MSH-5, and ZHP-3 nevertheless colocalize at DSB-dependent sites during late prophase, reflecting an inherent affinity of these factors for DSB repair sites. In contrast, in mutants where SYP proteins are present but form aggregates or display abnormal synapsis, pro-CO factors consistently track with SYP-1 localization. Further, pro-CO factors usually localize to a single site per SYP-1 structure, even in SYP aggregates or in mutants where the SC forms between sister chromatids, suggesting that CO regulation occurs within these aberrant SC structures. Moreover, we find that the meiotic cohesin REC-8 is required to ensure that SC formation occurs between homologs and not sister chromatids. Taken together, our findings support a model in which SYP proteins promote CO formation by promoting the localization of pro-CO factors to recombination events within an SC compartment, thereby ensuring that pro-CO factors identify a recombination event within an SC structure and that CO maturation occurs only between properly aligned homologous chromosomes.


Subject(s)
Chromatids/genetics , Crossing Over, Genetic/genetics , Meiosis/genetics , Synaptonemal Complex/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosome Pairing/genetics , Chromosome Segregation/genetics , DNA Breaks, Double-Stranded , DNA Repair/genetics , DNA-Binding Proteins/genetics , Nuclear Proteins/genetics , Recombination, Genetic , Cohesins
13.
Elife ; 82019 05 14.
Article in English | MEDLINE | ID: mdl-31084708

ABSTRACT

A multiplexed approach to DNA FISH experiments has been used to visualize the three-dimensional organization of chromosomes and specific chromosomal regions in C. elegans.


Subject(s)
Caenorhabditis elegans/genetics , Chromosomes , Animals , Cell Nucleus , DNA , Genome
14.
Chromosoma ; 128(3): 199-214, 2019 09.
Article in English | MEDLINE | ID: mdl-30826870

ABSTRACT

Meiosis is a conserved cell division process that is used by sexually reproducing organisms to generate haploid gametes. Males and females produce different end products of meiosis: eggs (females) and sperm (males). In addition, these unique end products demonstrate sex-specific differences that occur throughout meiosis to produce the final genetic material that is packaged into distinct gametes with unique extracellular morphologies and nuclear sizes. These sexually dimorphic features of meiosis include the meiotic chromosome architecture, in which both the lengths of the chromosomes and the requirement for specific meiotic axis proteins being different between the sexes. Moreover, these changes likely cause sex-specific changes in the recombination landscape with the sex that has the longer chromosomes usually obtaining more crossovers. Additionally, epigenetic regulation of meiosis may contribute to sexually dimorphic recombination landscapes. Here we explore the sexually dimorphic features of both the chromosome axis and crossing over for each stage of meiotic prophase I in Mus musculus, Caenorhabditis elegans, and Arabidopsis thaliana. Furthermore, we consider how sex-specific changes in the meiotic chromosome axes and the epigenetic landscape may function together to regulate crossing over in each sex, indicating that the mechanisms controlling crossing over may be different in oogenesis and spermatogenesis.


Subject(s)
Meiotic Prophase I/physiology , Sex Characteristics , Sexual Development , Animals , Cell Cycle Proteins/metabolism , Crossing Over, Genetic , DNA Breaks, Double-Stranded , Female , Homologous Recombination , Humans , Male , Nuclear Proteins/metabolism , Oogenesis , Protein Binding , Sexual Development/genetics , Spermatogenesis
16.
Genetics ; 198(1): 193-207, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25053665

ABSTRACT

Meiotic recombination is initiated by the programmed induction of double-strand DNA breaks (DSBs), lesions that pose a potential threat to the genome. A subset of the DSBs induced during meiotic prophase become designated to be repaired by a pathway that specifically yields interhomolog crossovers (COs), which mature into chiasmata that temporarily connect the homologs to ensure their proper segregation at meiosis I. The remaining DSBs must be repaired by other mechanisms to restore genomic integrity prior to the meiotic divisions. Here we show that HIM-6, the Caenorhabditis elegans ortholog of the RecQ family DNA helicase BLM, functions in both of these processes. We show that him-6 mutants are competent to load the MutSγ complex at multiple potential CO sites, to generate intermediates that fulfill the requirements of monitoring mechanisms that enable meiotic progression, and to accomplish and robustly regulate CO designation. However, recombination events at a subset of CO-designated sites fail to mature into COs and chiasmata, indicating a pro-CO role for HIM-6/BLM that manifests itself late in the CO pathway. Moreover, we find that in addition to promoting COs, HIM-6 plays a role in eliminating and/or preventing the formation of persistent MutSγ-independent associations between homologous chromosomes. We propose that HIM-6/BLM enforces biased outcomes of recombination events to ensure that both (a) CO-designated recombination intermediates are reliably resolved as COs and (b) other recombination intermediates reliably mature into noncrossovers in a timely manner.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Crossing Over, Genetic , Animals , Caenorhabditis elegans/enzymology , Caenorhabditis elegans Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Meiosis/genetics
17.
Nature ; 502(7473): 703-6, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24107990

ABSTRACT

Crossover recombination events between homologous chromosomes are required to form chiasmata, temporary connections between homologues that ensure their proper segregation at meiosis I. Despite this requirement for crossovers and an excess of the double-strand DNA breaks that are the initiating events for meiotic recombination, most organisms make very few crossovers per chromosome pair. Moreover, crossovers tend to inhibit the formation of other crossovers nearby on the same chromosome pair, a poorly understood phenomenon known as crossover interference. Here we show that the synaptonemal complex, a meiosis-specific structure that assembles between aligned homologous chromosomes, both constrains and is altered by crossover recombination events. Using a cytological marker of crossover sites in Caenorhabditis elegans, we show that partial depletion of the synaptonemal complex central region proteins attenuates crossover interference, increasing crossovers and reducing the effective distance over which interference operates, indicating that synaptonemal complex proteins limit crossovers. Moreover, we show that crossovers are associated with a local 0.4-0.5-micrometre increase in chromosome axis length. We propose that meiotic crossover regulation operates as a self-limiting system in which meiotic chromosome structures establish an environment that promotes crossover formation, which in turn alters chromosome structure to inhibit other crossovers at additional sites.


Subject(s)
Caenorhabditis elegans/genetics , Chromosomes/genetics , Chromosomes/metabolism , Crossing Over, Genetic , Meiosis , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans Proteins/metabolism , Chromosome Pairing , Chromosome Segregation , Chromosomes/chemistry , DNA Breaks, Double-Stranded , DNA-Binding Proteins/metabolism , Homologous Recombination , Meiosis/genetics , Nuclear Proteins/deficiency , Nuclear Proteins/metabolism , Synaptonemal Complex/metabolism
18.
PLoS Genet ; 9(8): e1003674, 2013.
Article in English | MEDLINE | ID: mdl-23950729

ABSTRACT

For most organisms, chromosome segregation during meiosis relies on deliberate induction of DNA double-strand breaks (DSBs) and repair of a subset of these DSBs as inter-homolog crossovers (COs). However, timing and levels of DSB formation must be tightly controlled to avoid jeopardizing genome integrity. Here we identify the DSB-2 protein, which is required for efficient DSB formation during C. elegans meiosis but is dispensable for later steps of meiotic recombination. DSB-2 localizes to chromatin during the time of DSB formation, and its disappearance coincides with a decline in RAD-51 foci marking early recombination intermediates and precedes appearance of COSA-1 foci marking CO-designated sites. These and other data suggest that DSB-2 and its paralog DSB-1 promote competence for DSB formation. Further, immunofluorescence analyses of wild-type gonads and various meiotic mutants reveal that association of DSB-2 with chromatin is coordinated with multiple distinct aspects of the meiotic program, including the phosphorylation state of nuclear envelope protein SUN-1 and dependence on RAD-50 to load the RAD-51 recombinase at DSB sites. Moreover, association of DSB-2 with chromatin is prolonged in mutants impaired for either DSB formation or formation of downstream CO intermediates. These and other data suggest that association of DSB-2 with chromatin is an indicator of competence for DSB formation, and that cells respond to a deficit of CO-competent recombination intermediates by prolonging the DSB-competent state. In the context of this model, we propose that formation of sufficient CO-competent intermediates engages a negative feedback response that leads to cessation of DSB formation as part of a major coordinated transition in meiotic prophase progression. The proposed negative feedback regulation of DSB formation simultaneously (1) ensures that sufficient DSBs are made to guarantee CO formation and (2) prevents excessive DSB levels that could have deleterious effects.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosome Segregation/genetics , Crossing Over, Genetic , DNA Breaks, Double-Stranded , DNA Repair/genetics , Meiosis/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Regulatory Networks , Homologous Recombination/genetics , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism
19.
Science ; 334(6060): 1286-9, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22144627

ABSTRACT

Most organisms rely on interhomolog crossovers (COs) to ensure proper meiotic chromosome segregation but make few COs per chromosome pair. By monitoring repair events at a defined double-strand break (DSB) site during Caenorhabditis elegans meiosis, we reveal mechanisms that ensure formation of the obligate CO while limiting CO number. We find that CO is the preferred DSB repair outcome in the absence of inhibitory effects of other (nascent) recombination events. Thus, a single DSB per chromosome pair is largely sufficient to ensure CO formation. Further, we show that access to the homolog as a repair template is regulated, shutting down simultaneously for both CO and noncrossover (NCO) pathways. We propose that regulation of interhomolog access limits CO number and contributes to CO interference.


Subject(s)
Caenorhabditis elegans/genetics , Crossing Over, Genetic , DNA, Helminth/genetics , Meiosis , Animals , Chromosome Pairing , DNA Breaks, Double-Stranded , DNA Repair , Recombination, Genetic
20.
Genetics ; 184(4): 985-97, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20139344

ABSTRACT

Gene amplification, a process that increases the copy number of a gene or a genomic region to two or more, is utilized by many organisms in response to environmental stress or decreased levels of a gene product. Our previous studies in Saccharomyces cerevisiae identified the amplification of a histone H2A-H2B gene pair, HTA2-HTB2, in response to the deletion of the other H2A-H2B gene pair, HTA1-HTB1. This amplification arises from a recombination event between two flanking Ty1 elements to form a new, stable circular chromosome and occurs at a frequency higher than has been observed for other Ty1-Ty1 recombination events. To understand the regulation of this amplification event, we screened the S. cerevisiae nonessential deletion set for mutations that alter the amplification frequency. Among the deletions that increase HTA2-HTB2 amplification frequency, we identified those that either decrease DNA replication fork progression (rrm3Delta, dpb3Delta, dpb4Delta, and clb5Delta) or that reduce histone H3-H4 levels (hht2-hhf2Delta). These two classes are related because reduced histone H3-H4 levels increase replication fork pauses, and impaired replication forks cause a reduction in histone levels. Consistent with our mutant screen, we found that the introduction of DNA replication stress by hydroxyurea induces the HTA2-HTB2 amplification event. Taken together, our results suggest that either reduced histone levels or slowed replication forks stimulate the HTA2-HTB2 amplification event, contributing to the restoration of normal chromatin structure.


Subject(s)
DNA Replication , Gene Amplification , Histones/genetics , Histones/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Chromatin/drug effects , Chromatin/metabolism , DNA Replication/drug effects , Gene Amplification/drug effects , Gene Deletion , Histones/deficiency , Hydroxyurea/pharmacology , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...