Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters










Publication year range
1.
Small ; : e2310813, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700050

ABSTRACT

The structure of supraparticles (SPs) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g., spray-drying, the achievable structure is limited by the inherent drying phenomena of the method. In particular, mixed NP dispersions of differently sized colloids are heavily affected by segregation during the assembly. Herein, the influence of the colloidal arrangement of Pt and SiO2 NPs within a single supraparticulate entity is investigated. A salt-based electrostatic manipulation approach of the utilized NPs is proposed to customize the structure of spray-dried Pt/SiO2 SPs. By this, size-dependent separation phenomena of NPs during solvent evaporation, that limit the catalytic performance in the reduction of 4-nitrophenol, are overcome by achieving even Pt NP distribution. Additionally, the textural properties (pore size and distribution) of the SiO2 pore framework are altered to improve the mass transfer within the material leading to increased catalytic activity. The suggested strategy demonstrates a powerful, material-independent, and universally applicable approach to deliberately customize the structure and functionality of multi-component SP systems. This opens up new ways of colloidal material combinations and structural designs in droplet-assisted forced assembly approaches like spray-drying.

2.
Article in English | MEDLINE | ID: mdl-38652177

ABSTRACT

The concept of a solid catalyst with an ionic liquid layer (SCILL) is a promising approach to improve the selectivity of noble metal catalysts in heterogeneous reactions. In order to understand the origins of this selectivity control, we investigated the growth and thermal stability of ultrathin 1-ethyl-3-methylimidazolium trifluormethanesulfonate [C2C1Im][OTf] films on Pt(111) by infrared reflection absorption spectroscopy (IRAS) and X-ray photoelectron spectroscopy (XPS) in time-resolved and temperature-programmed experiments. We combined these spectroscopy experiments with scanning tunneling microscopy (STM) to obtain detailed insights into the orientation and adsorption geometry of the ions in the first IL layer. Furthermore, we propose a mechanism for the thermal evolution of [C2C1Im][OTf] on Pt(111). We observe an intact IL layer on the surface at temperatures below 200 K. Adsorbed [C2C1Im][OTf] forms islands, which are evenly distributed over the surface. The [OTf]- anion adsorbs via the SO3 group, with the molecular axis perpendicular to the surface. Anions and cations are arranged next to each other, alternating on the Pt(111) surface. Upon heating to 250 K, we observe changes in geometry and structural distribution. Whereas at low temperature, the ions are arranged alternately for electrostatic reasons, this driving force is no longer decisive at 250 K. Here, a phase separation of two different species is discernible in STM. We propose that this effect is due to a surface reaction, which changes the charge of the adsorbates. We assume that the IL starts to decompose at around 250 K, and thus, pristine IL and decomposition products coexist on the surface. Also, IRAS and XPS show indication of IL decomposition. Further heating leads to increased IL decomposition. The reaction products associated with the anions are volatile and leave the surface. In contrast, the cation fragments remain on the surface up to temperatures above 420 K.

3.
J Phys Chem Lett ; 15(9): 2529-2536, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38412511

ABSTRACT

Electrochemically active liquid organic hydrogen carriers (EC-LOHCs) can be used directly in fuel cells; so far, however, they have rather low hydrogen storage capacities. In this work, we study the electrooxidation of a potential EC-LOHC with increased energy density, 1-cyclohexylethanol, which consists of two storage functionalities (a secondary alcohol and a cyclohexyl group). We investigated the product spectrum on low-index Pt single-crystal surfaces in an acidic environment by combining cyclic voltammetry, chronoamperometry, and in situ infrared spectroscopy, supported by density functional theory. We show that the electrooxidation of 1-cyclohexylethanol is a highly structure-sensitive reaction with activities Pt(111) ≫ Pt(100) > Pt(110). Most importantly, we demonstrate that 1-cyclohexylethanol can be directly converted to acetophenone, which desorbs from the electrode surface. However, decomposition products are formed, which lead to poisoning. If the latter side reactions could be suppressed, the electrooxidation of 1-cyclohexylethanol would enable the development of EC-LOHCs with greatly increased hydrogen storage capacities.

4.
Phys Chem Chem Phys ; 26(3): 1630-1639, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-37850575

ABSTRACT

The electrocatalytic properties of advanced metal-oxide catalysts are often related to a synergistic interplay between multiple active catalyst phases. The structure and chemical nature of these active phases are typically established under reaction conditions, i.e. upon interaction of the catalyst with the electrolyte. Here, we present a fundamental surface science (scanning tunneling microscopy, X-ray photoelectron spectroscopy, and low-energy electron diffraction) and electrochemical (cyclic voltammetry) study of CeO2(111) nanoislands on Pt(111) in blank alkaline electrolyte (0.1 M KOH) in a potential window between -0.05 and 0.9 VRHE. We observe a size- and preparation-dependent behavior. Large ceria nanoislands prepared at high temperatures exhibit stable redox behavior with Ce3+/Ce4+ electrooxidation/reduction limited to the surface only. In contrast, ceria nanoislands, smaller than ∼5 nm prepared at a lower temperature, undergo conversion into a fully hydrated phase with Ce3+/Ce4+ redox transitions, which are extended to the subsurface region. While the formation of adsorbed OH species on Pt depends strongly on the ceria coverage, the formation of adsorbed Hads on Pt is independent of the ceria coverage. We assign this observation to intercalation of Hads at the Pt/ceria interface. The intercalated Hads cannot participate in the hydrogen evolution reaction, resulting in the moderation of this reaction by ceria nanoparticles on Pt.

5.
J Phys Chem Lett ; 14(39): 8820-8827, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37750826

ABSTRACT

New diagnostic approaches are needed to drive progress in the field of electrocatalysis and address the challenges of developing electrocatalytic materials with superior activity, selectivity, and stability. To this end, we developed a versatile experimental setup that combines two complementary in-situ techniques for the simultaneous chemical and structural analysis of planar electrodes under electrochemical conditions: high-energy surface X-ray diffraction (HE-SXRD) and infrared reflection absorption spectroscopy (IRRAS). We tested the potential of the experimental setup by performing a model study in which we investigated the oxidation of preadsorbed CO on a Pt(111) surface as well as the oxidation of the Pt(111) electrode itself. In a single experiment, we were able to identify the adsorbates, their potential dependent adsorption geometries, the effect of the adsorbates on the surface morphology, and the structural evolution of Pt(111) during surface electro-oxidation. In a broader perspective, the combined setup has a high application potential in the field of energy conversion and storage.

6.
J Chem Phys ; 159(7)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37602805

ABSTRACT

The transition to renewable energy sources comes along with the search for new energy storage solutions. Molecular solar thermal systems directly harvest and store solar energy in a chemical manner. By a suitable molecular design, a higher overall efficiency can be achieved. In this study, we investigate the surface chemistry of oxa-norbornadiene/quadricyclane derivatives on a Pt(111) surface. Specifically, we focus on the energy storage and release properties of molecules that are substituted with ester moieties of different sizes. For our model catalytic approach, synchrotron radiation-based x-ray photoelectron spectroscopy measurements were conducted in ultra-high vacuum (UHV) and correlated with the catalytic behavior in the liquid phase monitored by photochemical infrared reflection absorption spectroscopy. The differences in their spectral appearance enabled us to unambiguously differentiate the energy-lean and energy-rich isomers and decomposition products. Next to qualitative information on the adsorption motifs, temperature-programmed experiments allowed for the observation of thermally induced reactions and the deduction of the related reaction pathways. We analyzed the selectivity of the cycloreversion reaction from the energy-rich quadricyclane derivative to its energy-lean norbornadiene isomer and competing processes, such as desorption and decomposition. For the 2,3-bis(methylester)-substitution, the cycloreversion reaction was found to occur between 310 and 340 K, while the thermal stability limit of the compounds was determined to be 380 K. The larger 2,3-bis(benzylester) derivatives have a lower apparent adsorption energy and a decomposition onset already at 135 K. In the liquid phase (in acetonitrile), we determined the rate constants for the cycloreversion reaction on Pt(111) to k = 5.3 × 10-4 s-1 for the 2,3-bis(methylester)-substitution and k = 6.3 × 10-4 s-1 for the 2,3-bis(benzylester) derivative. The selectivities were of >99% and 98% for the two molecules, respectively. The difference in the catalytic behavior of Pt(111) for both derivatives is less pronounced in the liquid phase than in UHV, which we attribute to the passivation of the Pt(111) surface by carbonaceous species under ambient conditions.

7.
Chemistry ; 29(46): e202301328, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37277680

ABSTRACT

In a solid catalyst with ionic liquid layer (SCILL), ionic liquid (IL) coatings are used to improve the selectivity of noble metal catalysts. To understand the origins of this selectivity control, we performed model studies by surface science methods in ultrahigh vacuum (UHV). We investigated the growth and thermal stability of ultrathin IL films by infrared reflection absorption spectroscopy (IRAS). We combined these experiments with scanning tunneling microscopy (STM) to obtain information on the orientation of the ions, the interactions with the surface, the intermolecular interactions, and the structure formation. Additionally, we performed DFT calculations and molecular dynamics (MD) simulations to interpret the experimental data. We studied the IL 1-ethyl-3-methylimidazolium trifluoromethanesulfonate [C2 C1 Im][OTf] on Au(111) surfaces. We observe a weakly bound multilayer of [C2 C1 Im][OTf], which is stable up to 390 K, while the monolayer desorbs at ∼450 K. [C2 C1 Im][OTf] preferentially adsorbs at the step edges and elbows of the herringbone reconstruction of Au(111). The anion adsorbs via the SO3 group with the molecular axis perpendicular to the surface. At low coverage, the [C2 C1 Im][OTf] crystallizes in a glass-like 2D phase with short-range order. At higher coverage, we observe a phase transition to a 6-membered ring structure with long-range order.

8.
J Chem Phys ; 158(13): 134722, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37031150

ABSTRACT

The recent transition to H2-based energy storage demands reliable H2 sensors that allow for easy, fast, and reliable detection of leaks. Conventional H2 detectors are based on the changes of physical properties of H2 probes induced by subsurface H-atoms to a material such as electrical conductivity. Herein, we report on highly reactive gasochromic H2 detectors based on the adsorption of H2 on the material surface. We prepared supraparticles (SPs) containing different types of noble metal nanoparticles (NPs), silica NPs, and the dye resazurin by spray-drying and tested their performance for H2 detection. The material undergoes a distinct color change due to the hydrogenation of the purple resazurin to pink resorufin and, finally, colorless hydroresorufin. The stepwise transition is fast and visible to the naked eye. To further improve the performance of the sensor, we tested the reactivity of SPs with different catalytically active NPs by means of in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). We show that the choice of the NP catalyst has a pronounced effect on the response of the H2 indicator. In addition, we demonstrate that the performance depends on the size of the NPs. These effects are attributed to the availability of reactive H-atoms on the NP surface. Among the materials studied, Pt-containing SPs gave the best results for H2 detection.

9.
ACS Appl Mater Interfaces ; 15(15): 19536-19544, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37017296

ABSTRACT

Solution-based atomic layer deposition (sALD) processes enable the preparation of thin films on nanostructured surfaces while controlling the film thickness down to a monolayer and preserving the homogeneity of the film. In sALD, a similar operation principle as in gas-phase ALD is used, however, with a broader range of accessible materials and without requiring expensive vacuum equipment. In this work, a sALD process was developed to prepare CuSCN on a Si substrate using the precursors CuOAc and LiSCN. The film growth was studied by ex situ atomic force microscopy (AFM), analyzed by a neural network (NN) approach, ellipsometry, and a newly developed in situ infrared (IR) spectroscopy experiment in combination with density functional theory (DFT). In the self-limiting sALD process, CuSCN grows on top of an initially formed two-dimensional (2D) layer as three-dimensional spherical nanoparticles with an average size of ∼25 nm and a narrow particle size distribution. With increasing cycle number, the particle density increases and larger particles form via Ostwald ripening and coalescence. The film grows preferentially in the ß-CuSCN phase. Additionally, a small fraction of the α-CuSCN phase and defect sites form.

10.
J Phys Chem Lett ; 14(6): 1470-1477, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36744855

ABSTRACT

Molecular solar-thermal (MOST) systems combine solar energy conversion, storage, and release within one single molecule. To release the energy, different approaches are applicable, e.g., the electrochemical and the catalytic pathways. While the electrochemical pathway requires catalytically inert electrode materials, the catalytic pathway requires active and selective catalysts. In this work, we studied the catalytic activity and selectivity of graphite(0001), Pt(111), and Au(111) surfaces for the energy release from the MOST system 3-cyanophenylazothiophene along with its adsorption properties. In our study, we combine in situ photochemical IR spectroscopy and density functional theory (DFT). Graphite(0001) is catalytically inactive, shows the weakest reactant-surface interaction, and therefore is ideally suitable for electrochemical triggering. On Pt(111), we observe strong reactant-surface interactions along with moderate catalytic activity and partial decomposition, which limit the applicability of this material. On Au(111), we observe high catalytic activity and high selectivity (>99%). We assign these catalytic properties to the moderate reactant surface interaction, which prevents decomposition but facilitates energy release via a singlet-triplet mechanism.

11.
J Phys Chem Lett ; 13(47): 11015-11022, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36411106

ABSTRACT

We present a new technique for investigating complex model electrocatalysts by means of electrochemical in situ ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). Using a specially designed miniature capillary device, we prepared a three-electrode electrochemical cell in a thin-layer configuration and analyzed the active electrode/electrolyte interface by using "tender" X-ray synchrotron radiation. We demonstrate the potential of this versatile method by investigating a complex model electrocatalyst. Specifically, we monitored the oxidation state of Pd nanoparticles supported on an ordered Co3O4(111) film on Ir(100) in an alkaline electrolyte under potential control. We found that the Pd oxide formed in the in situ experiment differs drastically from the one observed in an ex situ emersion experiment at similar potential. We attribute these differences to the decomposition of a labile palladium oxide/hydroxide species after emersion. Our experiment demonstrates the potential of our approach and the importance of electrochemical in situ AP-XPS for studying complex electrocatalytic interfaces.

12.
ChemSusChem ; 15(24): e202201483, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36213958

ABSTRACT

Molecular solar thermal (MOST) systems, such as the norbornadiene/quadricyclane (NBD/QC) couple, combine solar energy conversion, storage, and release in a simple one-photon one-molecule process. Triggering the energy release electrochemically enables high control of the process, high selectivity, and reversibility. In this work, the influence of the molecular design of the MOST couple on the electrochemically triggered back-conversion reaction was addressed for the first time. The MOST systems phenyl-ethyl ester-NBD/QC (NBD1/QC1) and p-methoxyphenyl-ethyl ester-NBD/QC (NBD2/QC2) were investigated by in-situ photoelectrochemical infrared spectroscopy, voltammetry, and density functional theory modelling. For QC1, partial decomposition (40 %) was observed upon back-conversion and along with a voltammetric peak at 0.6 Vfc , which was assigned primarily to decomposition. The back-conversion of QC2, however, occurred without detectable side products, and the corresponding peak at 0.45 Vfc was weaker by a factor of 10. It was concluded that the electrochemical stability of a NBD/QC couple is easy tunable by simple structural changes. Furthermore, the charge input and, therefore, the current for the electrochemically triggered energy release is very low, which ensures a high overall efficiency of the MOST system.

13.
Chem Mater ; 34(17): 7916-7936, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36117879

ABSTRACT

Understanding how reaction conditions affect metal-support interactions in catalytic materials is one of the most challenging tasks in heterogeneous catalysis research. Metal nanoparticles and their supports often undergo changes in structure and oxidation state when exposed to reactants, hindering a straightforward understanding of the structure-activity relations using only ex situ or ultrahigh vacuum techniques. Overcoming these limitations, we explored the metal-support interaction between gold nanoparticles and ceria supports in ultrahigh vacuum and after exposure to CO. A combination of in situ methods (on powder and model Au/CeO2 samples) and theoretical calculations was applied to investigate the gold/ceria interface and its reactivity toward CO exposure. X-ray photoelectron spectroscopy measurements rationalized by first-principles calculations reveal a distinctly inhomogeneous charge distribution, with Au+ atoms in contact with the ceria substrate and neutral Au0 atoms at the surface of the Au nanoparticles. Exposure to CO partially reduces the ceria substrate, leading to electron transfer to the supported Au nanoparticles. Transferred electrons can delocalize among the neutral Au atoms of the particle or contribute to forming inert Auδ- atoms near oxygen vacancies at the ceria surface. This charge redistribution is consistent with the evolution of the vibrational frequencies of CO adsorbed on Au particles obtained using diffuse reflectance infrared Fourier transform spectroscopy.

14.
Rev Sci Instrum ; 93(6): 065111, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35777992

ABSTRACT

Characterizing electrode surface structures under operando conditions is essential for fully understanding structure-activity relationships in electrocatalysis. Here, we combine in a single experiment high-energy surface x-ray diffraction as a characterizing technique with a rotating disk electrode to provide steady state kinetics under electrocatalytic conditions. Using Pt(111) and Pt(100) model electrodes, we show that full crystal truncation rod measurements are readily possible up to rotation rates of 1200 rpm. Furthermore, we discuss possibilities for both potentiostatic as well as potentiodynamic measurements, demonstrating the versatility of this technique. These different modes of operation, combined with the relatively simple experimental setup, make the combined rotating disk electrode-surface x-ray diffraction experiment a powerful technique for studying surface structures under operando electrocatalytic conditions.

15.
ChemSusChem ; 15(18): e202200958, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35762102

ABSTRACT

Molecular solar thermal (MOST) systems combine solar energy conversion, storage, and release in simple one-photon one-molecule processes. Here, we address the electrochemically triggered energy release from an azothiophene-based MOST system by photoelectrochemical infrared reflection absorption spectroscopy (PEC-IRRAS) and density functional theory (DFT). Specifically, the electrochemically triggered back-reaction from the energy rich (Z)-3-cyanophenylazothiophene to its energy lean (E)-isomer using highly oriented pyrolytic graphite (HOPG) as the working electrode was studied. Theory predicts that two reaction channels are accessible, an oxidative one (hole-catalyzed) and a reductive one (electron-catalyzed). Experimentally it was found that the photo-isomer decomposes during hole-catalyzed energy release. Electrochemically triggered back-conversion was possible, however, through the electron-catalyzed reaction channel. The reaction rate could be tuned by the electrode potential within two orders of magnitude. It was shown that the MOST system withstands 100 conversion cycles without detectable decomposition of the photoswitch. After 100 cycles, the photochemical conversion was still quantitative and the electrochemically triggered back-reaction reached 94 % of the original conversion level.

16.
ACS Catal ; 12(9): 5661-5672, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35572184

ABSTRACT

The water gas shift reaction (WGSR) is catalyzed by supported ionic liquid phase (SILP) systems containing homogeneous Ru complexes dissolved in ionic liquids (ILs). These systems work at very low temperatures, that is, between 120 and 160 °C, as compared to >200 °C in the conventional process. To improve the performance of this ultra-low-temperature catalysis, we investigated the influence of various additives on the catalytic activity of these SILP systems. In particular, the application of methylene blue (MB) as an additive doubled the activity. Infrared spectroscopy measurements combined with density functional theory (DFT) calculations excluded a coordinative interaction of MB with the Ru complex. In contrast, state-of-the-art theoretical calculations elucidated the catalytic effect of the additives by non-covalent interactions. In particular, the additives can significantly lower the barrier of the rate-determining step of the reaction mechanism via formation of hydrogen bonds. The theoretical predictions, thereby, showed excellent agreement with the increase of experimental activity upon variation of the hydrogen bonding moieties in the additives investigated.

17.
Angew Chem Int Ed Engl ; 61(29): e202202957, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35443095

ABSTRACT

The "solid catalyst with ionic liquid layer" (SCILL) is an extremely successful new concept in heterogeneous catalysis. The idea is to boost the selectivity of a catalyst by its modification with an ionic liquid (IL). Here, we show that it is possible to use the same concept in electrocatalysis for the selective transformation of organic compounds. We scrutinize the electrooxidation of 2,3-butanediol, a reaction which yields two products, singly oxidized acetoin and doubly oxidized diacetyl. When adding the IL (1-ethyl-3-methyl-imidazolium trifluormethanesulfonate, [C2 C1 Im][OTf]), the selectivity for acetoin increases drastically. By in situ spectroscopy, we analyze the underlying mechanism: Specific adsorption of the IL anions suppresses the activation of water for the second oxidation step and, thus, enhances the selectivity for acetoin. Our study demonstrates the great potential of this approach for selective transformation of organic compounds.

18.
ACS Catal ; 12(6): 3256-3268, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35359579

ABSTRACT

Co oxides and oxyhydroxides have been studied extensively in the past as promising electrocatalysts for the oxygen evolution reaction (OER) in neutral to alkaline media. Earlier studies showed the formation of an ultrathin CoO x (OH) y skin layer on Co3O4 at potentials above 1.15 V vs reversible hydrogen electrode (RHE), but the precise influence of this skin layer on the OER reactivity is still under debate. We present here a systematic study of epitaxial spinel-type Co3O4 films with defined (111) orientation, prepared on different substrates by electrodeposition or physical vapor deposition. The OER overpotential of these samples may vary up to 120 mV, corresponding to two orders of magnitude differences in current density, which cannot be accounted for by differences in the electrochemically active surface area. We demonstrate by a careful analysis of operando surface X-ray diffraction measurements that these differences are clearly correlated with the average thickness of the skin layer. The OER reactivity increases with the amount of formed skin layer, indicating that the entire three-dimensional skin layer is an OER-active interphase. Furthermore, a scaling relationship between the reaction centers in the skin layer and the OER activity is established. It suggests that two lattice sites are involved in the OER mechanism.

19.
Angew Chem Int Ed Engl ; 61(20): e202201916, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35267236

ABSTRACT

Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F430 and P450nor co-factors, with their reduced NiI - and FeIII -containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature. The interpretation of the measurements is far from being straightforward due to the high reactivity of the different nitrogen oxides species (eventually present in the residual gas background) and of the possible reaction intermediates. The picture is detailed in order to disentangle the challenging complexity of the system, where even a small fraction of contamination can change the scenario.


Subject(s)
Nickel , Nitric Oxide , Copper , Ferric Compounds , Metals , Oxidation-Reduction
20.
J Phys Condens Matter ; 34(19)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35108686

ABSTRACT

The decomposition mechanisms of ethanol and ethylene glycol on well-ordered stoichiometric CeO2(111) and partially reduced CeO2-x(111) films were investigated by means of synchrotron radiation photoelectron spectroscopy, resonant photoemission spectroscopy, and temperature programmed desorption. Both alcohols partially deprotonate upon adsorption at 150 K and subsequent annealing yielding stable ethoxy and ethylenedioxy species. The C-C bond scission in both ethoxy and ethylenedioxy species on stoichiometric CeO2(111) involves formation of acetaldehyde-like intermediates and yields CO and CO2accompanied by desorption of acetaldehyde, H2O, and H2. This decomposition pathway leads to the formation of oxygen vacancies. In the presence of oxygen vacancies, C-O bond scission in ethoxy species yields C2H4. In contrast, C-C bond scission in ethylenedioxy species on the partially reduced CeO2-x(111) is favored with respect to C-O bond scission and yields methanol, formaldehyde, and CO accompanied by the desorption of H2O and H2. Still, scission of C-O bonds on both sides of the ethylenedioxy species yields minor amounts of accompanying C2H4and C2H2. C-O bond scission is coupled with a partial recovery of the lattice oxygen in competition with its removal in the form of water.

SELECTION OF CITATIONS
SEARCH DETAIL
...