Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Exp Appl Acarol ; 93(2): 253-272, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38869730

ABSTRACT

Florida's strawberry industry is currently valued at $511 million annually but faces challenges from pathogens and arthropod pests especially Tetranychus urticae Koch (twospotted spider mite) and Scirtothrips dorsalis Hood (chilli thrips). Predatory mites, particularly Neoseiulus cucumeris Oudemans, Neoseiulus californicus McGregor, and Amblyseius swirskii Athias-Henriot, play a crucial role in pest management. However, there are concerns regarding how these biological control agents are affected by fungicides used in current pathogen management strategies. This study assessed the residual effects of commonly used fungicides in strawberries on the survival, feeding, and oviposition of these predatory mites. Commercially sourced predatory mites were reared on S. dorsalis larvae, and gravid female predators placed on fungicide treated strawberry leaf discs in a Munger cell for 120 h. Fungicides tested included two formulations of Captan, hydrogen peroxide + peroxyacetic acid, cyprodinil + fludioxonil, tetramethylthiuram disulfide, cyflufenamid and a control. All fungicides tested had an impact on the survival, feeding, and oviposition of the predators. Among the fungicide treatments, the lowest predator survival was observed in the cyprodinil + fludioxonil treatment, while the highest was observed in the hydrogen peroxide + peroxyacetic acid and tetramethylthiuram disulfide treatments. In all treatments, feeding and oviposition greatly varied among predators; specifically, N. cucumeris and A. swirskii had the lowest prey consumption, while N. californicus had the highest. These findings highlight the potential incompatibility between fungicides and predatory mites and demonstrate the need for the development of a fungicide rotation program tailored to the different susceptibilities of predators to fungicides.


Subject(s)
Fragaria , Fungicides, Industrial , Mites , Animals , Fungicides, Industrial/pharmacology , Mites/drug effects , Mites/physiology , Female , Oviposition/drug effects , Pest Control, Biological , Predatory Behavior/drug effects , Larva/growth & development , Larva/drug effects
2.
J Econ Entomol ; 117(3): 834-842, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38687636

ABSTRACT

Southern red mite, Oligonychus ilicis McGregor (Acari: Tetranychidae), is an important polyphagous spider mite pest that causes economic damage to many ornamentals, coffee, and fruit crops. Blueberry growers in the Southeastern United States, including Florida and Georgia, have experienced severe losses due to outbreaks of O. ilicis. Predatory mites are an important management tool used for controlling spider mites; however, predators have not been studied and successfully evaluated in blueberry systems. Amblyseius swirskii Athias-Henriot, Phytoseiulus persimilis Athias-Henriot, and Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) are among the most economically important arthropod agents used in augmentative biological control worldwide. To evaluate the potential of these 3 commercially available predatory mites for use in blueberry plantings, we conducted experiments under controlled laboratory conditions and in the greenhouse. In preliminary laboratory experiments, P. persimilis and N. californicus significantly reduced the number of O. ilicis motile stages below those found in the untreated control, indicating the potential for these 2 predatory mite species to suppress O. ilicis populations. Amblyseius swirskii did not perform well controlling O. ilicis motiles in the laboratory. Under greenhouse conditions, N. californicus and P. persimilis significantly reduced the number of eggs after 7 days of release and the number of motile stages after 14 days of release. This is the first report of using phytoseiid mites to suppress O. ilicis in blueberry systems in the United States. Further studies on predator behavior, feeding preferences, and acaricide compatibility with predators are required to investigate the possibility of using P. persimilis, and N. californicus as biological control agents of O. ilicis in blueberry systems.


Subject(s)
Blueberry Plants , Pest Control, Biological , Predatory Behavior , Tetranychidae , Animals , Tetranychidae/physiology , Female
3.
J Econ Entomol ; 117(2): 585-594, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38227632

ABSTRACT

Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) is an invasive, early-season pest of strawberry in Florida, causing feeding injury to young foliage that results in stunted plant growth and yield loss. Spinetoram, an effective insecticide for thrips pests with up to 3 applications per season permitted in strawberry, is often applied repeatedly during the early-season (Oct-Nov) to manage S. dorsalis, leaving few or no applications for flower thrips pests later in the season (Dec-Mar). Therefore, new strategies are needed to manage S. dorsalis with less insecticide, with the hypothesis that the first insecticide application can be delayed because young strawberry plants can compensate for minor feeding injury without compromising strawberry yield. Experiments conducted in strawberry field plots in Balm, FL, during 2018 and 2019 showed that delaying a spinetoram application for 14 days after infesting a plant with zero, 5, 10, or 20 S. dorsalis adults did not reduce the plant vigor and yield compared to spinetoram application after 4 days. Furthermore, young plants recovered from injury (10-30% bronzing injury on leaf veins and petioles) due to 1 or 2 S. dorsalis adults or larvae per trifoliate. A strategy of delaying the first spinetoram application when plants have 4-5 trifoliates should help reduce the number of insecticide applications needed for S. dorsalis management and reserve spinetoram applications for later in the season. Lower input costs in Florida strawberry without compromising yields due to thrips damage will improve the economics and sustainability of production systems.


Subject(s)
Fragaria , Insecticides , Macrolides , Thysanoptera , Animals , Florida
4.
PLoS One ; 18(12): e0293587, 2023.
Article in English | MEDLINE | ID: mdl-38060506

ABSTRACT

Attract-and-kill (A&K) is a potential alternative control tactic for managing the invasive spotted-wing drosophila, Drosophila suzukii Matsumura. Here, we compared the efficacy of two novel A&K formulations based on proprietary blends-ACTTRA SWD OR1 (henceforth OR1) and ACTTRA SWD TD (henceforth TD)-in managing D. suzukii. Using two-choice bioassays, we compared OR1 and TD for their relative attractiveness to adult D. suzukii. Additionally, we tested how the addition of (1) a red dye (visual cue) and (2) the insecticide spinosad (Entrust™) to the OR1 and TD formulations influenced the attraction of adult D. suzukii in the presence of blueberry fruits. Finally, complementary laboratory efficacy (no-choice) bioassays were conducted to assess the mortality of adult D. suzukii exposed to OR1 and TD. A direct comparison between TD and OR1 formulations indicated the TD formulation was ~8 times more attractive than OR1. Adding a red dye to the TD or OR1 formulation did not significantly alter the attraction or mortality of adult D. suzukii compared to the formulation without a dye. Similarly, irrespective of dye status, adding spinosad to either the TD or OR1 formulation did not alter the adult D. suzukii behavioral response to these formulations but resulted in significantly higher D. suzukii mortality. Overall, the TD formulations resulted in significantly higher, or at least comparable, mortality to the OR1 formulations. In summary, our laboratory results demonstrated the higher efficacy of a TD-based A&K product in managing D. suzukii over its well-tested predecessor, the OR1 formulation, confirming its potential as a new behavioral tactic against this pest.


Subject(s)
Insect Control , Insecticides , Animals , Insect Control/methods , Drosophila/physiology , Insecticides/pharmacology , Fruit , Biological Assay
5.
Insects ; 14(9)2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37754708

ABSTRACT

In the USA, tomato chlorotic spot virus (TCSV) was first identified in Miami-Dade County of Florida in 2012. This viral disease is transmitted by thrips (Thysanoptera: Thripidae) of different species, imposing a serious threat to the entire tomato production in the state. Both cultural and chemical control techniques could be essential tools to combat this vector-borne disease. In the present two-year-long study, we determined the effect of different types of plastic mulches and biorational insecticides on managing thrips and TCSV. Results from the leaf and flower samples showed a significantly lower adult thrips population in Entrust®SC treated tomatoes than in other treated and untreated tomatoes in 2018. Silver on black and silver on white reflective plastic mulches significantly reduced the adult thrips population in 2018. In both study years, marketable yield was significantly higher in tomatoes treated with Entrust®SC and reflective plastic mulches than in other treatments. The incidence of TCSV was significantly reduced in tomatoes treated with Entrust®SC and reflective plastic mulches than the untreated control in 2018. Marketable yield was negatively correlated with the thrips population, as observed from the Pearson correlation coefficient analysis. This research describes a potentially viable management program for thrips and thrips-transmitted TCSV.

6.
Insects ; 14(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37504580

ABSTRACT

Tetranychid outbreaks have been detected since 2016 in southern highbush blueberries (SHB); however, it was not until 2019 that the southern red mite (SRM), Oligonychus ilicis (Acari: Tetranychidae) was confirmed as the pest causing severe bronzing and stunting, in multiple Florida and Georgia commercial blueberry plantings. To date, only three miticides (fenazaquin, fenpyroximate, and acequinocyl) have been registered for use in SHB and there are no clear guidelines on how to manage SRM in SHB. Similarly, there is no knowledge regarding the existence of natural enemies of SRM in SHB. This is the first report of naturally occurring predatory mites (Amblyseius sp. and Neoseiulus ilicis) associated with SRM in SHB. Predatory mites were recorded in blueberry bushes after treatment with seven miticides used to suppress SRM populations including spiromesifen, acequinocyl, sulfur, sulfur + molasses, bifenazate, fenpyroximate, and fenazaquin. The number of SRM recorded per leaf and averaged plant damage ratings (0 = no bronzing-4 = 100% bronzing) were used to evaluate miticide efficacy. Additionally, the presence or absence of predatory mites per sample was recorded. Fenpyroximate used as the standard miticide, significantly reduced mite numbers seven days after application, as well as acequinocyl and fenazaquin. Fenpyroximate and fenazaquin demonstrated the best performance for managing O. ilicis on SHB and treated bushes demonstrated significantly less bronzing compared with the control plants. These miticides were also safe to naturally occurring predatory mites. Lastly, the level of growers' awareness regarding SRM was assessed using surveys in 2020 to design adequate educational materials available to the grower community.

7.
Insects ; 14(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36835744

ABSTRACT

Asian bean thrips, Megalurothrips usitatus Bagnall, are a serious pest of vegetable crops, especially leguminous crops, across the Asian continent. In Florida, it is a new invasive pest of snap beans. In 2019, it was recorded for the first time in the United States in snap bean (Phaseolus vulgaris) fields. Another thrips species, melon thrips, Thrips palmi Karny, is also a serious pest that affects several vegetable crops. Within-plant and within-field distribution patterns of M. usitatus and T. palmi were determined in snap bean fields in southern Florida. The highest number of both thrips species (Asian bean thrips and melon thrips) in snap beans were in flowers, followed by leaves and pods. Both adults and immatures of these thrips exhibited regular to clumped distribution patterns in bean fields. Several statistical indices showed agreement in the distribution patterns of Asian bean thrips, melon thrips, and larvae, irrespective of sampling units and plot size, in three years of study. In most instances, the distribution of Asian bean thrips and melon thrips was aggregated. This study assessed the optimum sample size to accurately determine the population density of these thrips for management purposes. The results from this study will be useful for implementing targeted management programs against thrips pests, thereby reducing labor costs and time. This information will also help reduce agrochemical use.

8.
J Econ Entomol ; 116(1): 202-208, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36617300

ABSTRACT

Spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is a key pest of many berry and fruit crops worldwide. The primary method of controlling this pest is the application of insecticides. Attract-and-kill is a management tactic that may reduce the number of insecticide applications needed to manage D. suzukii. ACTTRA SWD OR1 and ACTTRA SWD TD, developed by ISCA Technologies Inc., combine D. suzukii attractants with a gel matrix. Growers add an insecticide as a killing agent. The only USDA National Organic Program approved organic insecticide that has been shown to be effective as a killing agent is spinosad. This study aimed to determine the efficacy of other USDA National Organic Program approved organic insecticides, including Grandevo 30 WDG (Chromobacterium subtsugae strain PRAA4-1 30%), MBI-203 SC2 (C. subtsugae strain PRAA4-1 98%), Venerate XC (Burkholderia spp. Strain A396 94.45%), MBI-306 SC1 (B. rinojensis Strain A396 94.45%), Azera (azadirachtin 1.2% + pyrethrins 1.4%), and PyGanic (pyrethrins 1.4%), when used as the killing agent with the two ACTTRA SWD products. Lab and cage bioassays were conducted. Entrust (spinosad 22.5%) and PyGanic were the only compounds that showed some efficacy when used with ACTTRA SWD OR1 and ACTTRA SWD TD.


Subject(s)
Insecticides , Pyrethrins , Animals , Insecticides/pharmacology , Drosophila , Insect Control/methods , Fruit
9.
J Econ Entomol ; 115(6): 1995-2003, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36209398

ABSTRACT

Spotted-wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), is an invasive pest of thin-skinned fruits in the United States. Monitoring traps are an integral part of SWD integrated pest management, allowing early detection and timely management of this pest. An ideal monitoring trap should be easy to use, effective in capturing SWD, sensitive and selective to male SWD which are easy to identify due to their spotted wings, and able to predict fruit infestation from trap captures. Deli-cup-based liquid traps (grower standard), which make in-situ observations difficult, were compared with red-panel sticky traps, both baited with commercial lures (Scentry, Trécé Broad-Spectrum (BS), and Trécé High-Specificity (HS)), across several US states in blueberries (lowbush and highbush), blackberry, raspberry, and cherry crops during 2018 and 2021. Results showed that red-panel traps effectively captured SWD, were able to detect male SWD early in the season while also being selective to male SWD all season-long, and in some cases linearly related male SWD trap captures with fruit infestation. Scentry and Trécé BS lures captured similar numbers of SWD, though Trécé BS and Trécé HS were more selective for male SWD in red panel traps than liquid traps in some cases. In conclusion, due to its ease of use with less processing time, red-panel traps are promising tools for detecting and identifying male SWD in-situ and for predicting fruit infestation. However, further research is needed to refine the trap captures and fruit infestation relationship and elucidate the trap-lure interactions in berry and cherry crops.


Subject(s)
Blueberry Plants , Rubus , Male , Animals , Drosophila , Fruit , Insect Control/methods , Crops, Agricultural
10.
Insects ; 13(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36292905

ABSTRACT

The spotted-wing Drosophila (SWD), Drosophila suzukii, is native species in Southeast Asia. For over a decade, this invasive pest has been globally expanding. The economic losses to soft fruits and stoned fruits in the United States are increasing every year. Presently, the only viable tool to reduce the SWD population is the continued use of broad-spectrum insecticides. Pesticide resistance is appearing in the populations for the SWD. Organic farmers have limited options to control this pest in open fields. The major goal of this study was to develop cost-effective pest management strategies to manage the SWD using three types of mulches (two plant-based and one fabric-based) to reduce fly population and damage in open blueberry fields in north Florida. The study was conducted in two fruiting seasons (2017 and 2018). The study results demonstrated that the fly trap catches in 2017 shortleaf pine needle mulch had much higher populations (about 2.5-fold) of the SWD than all other treatments. In 2018, the numbers were about 1.7-fold more on shortleaf pine needle mulch than on other treatments. The fine texture of the mulch (pine needles) can easily facilitate the emergence of the SWD if the mulch is not thick enough. Although the pine needles covered the soil surface, it may have been too thin and thus allowed the SWD adults to emerge from the soil without much hindrance. In 2018, a higher population of the SWD was recorded from all the mulching practices. However, there were no significant differences in trap catches between all treatments. In general, the fly population is reduced with the use of pine bark and black weed fabric mulches. This is the first study that reports the effects of three mulches in controlling the SWD populations, which could benefit conventional and organic blueberry growers.

11.
J Econ Entomol ; 115(4): 1046-1053, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35296902

ABSTRACT

Drosophila suzukii (Matsumura) has spread rapidly, challenging berry and cherry crop production due to its ability to lay eggs into ripening fruit. To prevent infestation by this pest, insecticides are applied during fruit ripening and harvest. We field-tested the Rapid Assessment Protocol for IDentification of resistance in D. suzukii (RAPID) on seventy-eight populations collected across eight U.S. states in 2017 and 2018. Exposure to LC50 rates of malathion, methomyl, spinetoram, spinosad, and zeta-cypermethrin led to average female fly mortality of 25.0% in 2017, and after adjusting concentrations the average was 39.9% in 2018. Using LC99 × 2 discriminating concentrations in 2017 and LC90 × 8 rates in 2018, average female mortalities were 93.3% and 98.5%, respectively, indicating high overall susceptibility. However, using these high concentrations we found 32.0% of assays with survival of some female flies in 2017 and 27.8% in 2018. The adjustment in discriminating dose from 2017 to 2018 also reduced the proportion of assays with <90% survival from 17.6 to 2.9%. Populations with low mortality when exposed to spinosad were identified using this assay, triggering more detailed follow-up bioassays that identified resistant populations collected in California coastal region berry crops. Widespread evaluations of this method and subsequent validation in California, Michigan, and Georgia in 2019-2021 show that it provides a quick and low-cost method to identify populations of D. suzukii that warrant more detailed testing. Our results also provide evidence that important insecticide classes remain effective in most U.S. regions of fruit production.


Subject(s)
Insecticides , Animals , Crops, Agricultural , Drosophila , Female , Fruit , Insect Control/methods , Insecticides/pharmacology , Malathion/pharmacology , Methomyl/pharmacology , United States
12.
Environ Entomol ; 51(1): 22-31, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35171279

ABSTRACT

Plastic mulch of different colors and ultraviolet (UV) reflectivity individually or combined with released arthropod predators is an important component of an integrated pest management strategy. In 2015 and 2016, we evaluated the density and within-plant distribution of a released predatory mite, Amblyseius swirskii Athius-Henriot (Acari: Phytoseiidae) in snap bean (Phaseolus vulgaris L.), cucumber (Cucumis sativus L.), yellow squash (Cucurbita pepo L.), eggplant (Solanum melongena L.), Jalapeno pepper (Capsicum annuum L.), and tomato (Solanum lycopersicum L.) grown on different plastic mulches. The mulch treatments evaluated were: metalized top and black bottom, metalized top and white bottom, black-on-black, black-on-white, white-on-black, and bare soil with no mulch. Crop species had a significant effect on the density of A. swirskii. Eggplant and cucumber had higher numbers of A. swirskii than the other crops tested in 2015. In 2016, the density of A. swirskii was higher on eggplant than on cucumber. There was a variation in the distribution of A. swirskii in different strata of the plant canopies with the highest number in the bottom stratum of each crop, which was positively correlated with the population of Thrips palmi Karny (Thysanoptera: Thripidae). Mulch type had no effect on the density or distribution of A. swirskii in any strata of any of the crops tested. The results of this study indicate that releasing A. swirskii is compatible with the use of UV-reflective mulch. This information about host preference and within-plant distribution of A. swirskii should be of value in pest management programs for the crops studied.


Subject(s)
Mites , Vegetables , Animals , Pest Control, Biological/methods , Plant Dispersal , Plastics , Predatory Behavior
13.
J Econ Entomol ; 114(5): 2135-2146, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34240192

ABSTRACT

The twospotted spider mite, Tetranychus urticae (Koch) (Acari: Tetranychidae), is a key pest of strawberries and many other crops worldwide. Cover cropping, selecting tolerant or resistant cultivars, and biological control are important strategies of an organic management plan. In this study, we examined the effect of summer cover crops and strawberry cultivars on populations of T. urticae and a commercially available predatory mite, Neoseiulus californicus McGregor (Acari: Phytoseiidae), commonly used for T. urticae management in Florida. In the 2013-2014 season, four cover crops and eight strawberry cultivars were screened at the research station and on a commercial organic strawberry farm. The following season, the most promising cover crops (sunn hemp and hairy indigo) and cultivars, 'Sensation', 'Strawberry Festival', and 'Winterstar' were tested at the research station and on two small organic farms. In the 2016-2017, 2017-2018, and 2018-2019 seasons, a 4-way mix of cover crops was compared to sunn hemp and hairy indigo. In 2016-2017, 'Florida Radiance' was added to the three previously selected cultivars. 'Florida Beauty' replaced 'Strawberry Festival' in 2017-2018 and 2018-2019, and 'Florida Brilliance' replaced 'Winterstar' in 2018-2019. The effects of summer cover crops on both T. urticae and N. californicus were minimal. 'Florida Brilliance', 'Florida Radiance', 'Sensation', 'Strawberry Festival', and 'Winterstar' had lower T. urticae populations and higher yields in most seasons at most locations. The establishment and abundance of N. californicus was similar on these cultivars and was generally higher where T. urticae populations were higher. Implications for organic strawberry production in Florida are discussed.


Subject(s)
Fragaria , Mites , Tetranychidae , Animals , Florida , Pest Control, Biological , Predatory Behavior , Seasons
14.
Front Microbiol ; 12: 656406, 2021.
Article in English | MEDLINE | ID: mdl-34040592

ABSTRACT

There is growing evidence that symbiotic microbes can influence multiple nutrition-related behaviors of their hosts, including locomotion, feeding, and foraging. However, how the microbiome affects nutrition-related behavior is largely unknown. Here, we demonstrate clear sexual dimorphism in how the microbiome affects foraging behavior of a frugivorous fruit fly, Drosophila suzukii. Female flies deprived of their microbiome (axenic) were consistently less active in foraging on fruits than their conventional counterparts, even though they were more susceptible to starvation and starvation-induced locomotion was notably more elevated in axenic than conventional females. Such behavioral change was not observed in male flies. The lag of axenic female flies but not male flies to forage on fruits is associated with lower oviposition by axenic flies, and mirrored by reduced food seeking observed in virgin females when compared to mated, gravid females. In contrast to foraging intensity being highly dependent on the microbiome, conventional and axenic flies of both sexes showed relatively consistent and similar fruit preferences in foraging and oviposition, with raspberries being preferred among the fruits tested. Collectively, this work highlights a clear sex-specific effect of the microbiome on foraging and locomotion behaviors in flies, an important first step toward identifying specific mechanisms that may drive the modulation of insect behavior by interactions between the host, the microbiome, and food.

15.
Insects ; 12(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803537

ABSTRACT

Scirtothrips dorsalis Hood is an invasive and foliar pest of Florida blueberry that reduces plant growth by feeding on new leaf growth. A sampling plan is needed to make informed control decisions for S. dorsalis in blueberry. Fourteen blueberry fields in central Florida were surveyed in 2017 and 2018 after summer pruning to determine the spatial and temporal distribution of S. dorsalis and to develop a fixed-precision sampling plan. A sampling unit of ten blueberry shoots (with four to five leaves each) was collected from one blueberry bush at each point along a 40 × 40 m grid. Field counts of S. dorsalis varied largely ranging from zero to 1122 adults and larvae per sampling unit. Scirtothrips dorsalis had aggregated distribution that was consistent within fields and temporally stable between summers, according to Taylor's power law (TPL) (aggregation parameter, b = 1.57), probability distributions (56 out of 70 sampling occasions fit the negative binomial distribution), Lloyd's index (b > 1 in 94% occasions), and Spatial Analysis by Distance IndicEs (31% had significant clusters). The newly developed fixed-precision sampling plan required 167, 42, seven, or three sampling units to estimate a nominal mean density of 20 S. dorsalis per sampling unit with a precision of 5%, 10%, 25%, or 40%, respectively. New knowledge on S. dorsalis distribution will aid in evaluating the timing and effectiveness of control measures.

16.
Environ Entomol ; 50(1): 12-18, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33274377

ABSTRACT

Scirtothrips dorsalis Hood infest strawberry (Fragaria x ananassa Duchesne, Rosaceae) fields from nearby crop fields and surrounding vegetation and cause injury to plants by feeding on young leaf tissues. Greenhouse and field studies were conducted to determine the short-range movement of S. dorsalis to assess the risk of an early S. dorsalis population to spread to adjacent plants. In a greenhouse, 25 potted strawberry plants were arranged in two concentric rows around a central plant, where plants in inner rows were 20 cm, and those in the outer rows were 40 cm from the central plant. In the field, 20 strawberry plants were arranged in two beds (90 cm apart), ten in each bed, and five plants in each row, with plants 30 cm apart. White sticky cards were placed at 60-120 cm from the central plant. Fifty S. dorsalis adults were released on a centrally located plant, and the numbers of S. dorsalis adults and larvae and feeding injury were recorded for 9-17 d on adjacent plants and sticky cards. Results showed that significantly more S. dorsalis adults and larvae remained on the initially infested plant compared to adjacent plants, although few adults were found up to 120 cm on sticky cards. The rate of spread of feeding injury was low with slight bronzing injury (<10% injury) on adjacent plants by 14-17 d. Since most S. dorsalis remained on initially infested plants for at least 2 wk, it is feasible to delay management actions and 'rescue' plants around a plant with minor injury symptoms.


Subject(s)
Fragaria , Thysanoptera , Animals , Larva , Plant Leaves , Plants
17.
Insects ; 11(12)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260728

ABSTRACT

The strawberry seed bug, Neopamera bilobata (Say), is an emerging pest of organic and conventional strawberries in Florida. There is limited information on this Rhyparochromidae species. Thus, the type of injury caused is not clearly documented and management recommendations are lacking. In this study, we evaluated the effect of strawberry cultivars, cover crops, and the presence of runners on N. bilobata populations and yield. We also investigated the effect of select cultivars and the presence of runners on N. bilobata injury levels. In addition, we used fruit bagging experiments to investigate the effects of N. bilobata population and life stage (nymph vs. adult) on strawberry fruits. There was no effect of cover crop or cultivar on N. bilobata populations. In the 2017-2018 season, strawberry plots with runners contained higher N. bilobata populations compared with plots without runners, and adult infestation was significantly higher than nymphal infestation. In the 2018-2019 season, the trend was reversed with higher numbers of N. bilobata collected in plots with runners removed. In the 2019-2020 season, there was no significant difference in N. bilobata populations in plots with and without runners. In both 2018-2019 and 2019-2020, nymphal infestation was higher than adult infestation. Less injury was recorded in "Florida Brilliance" compared with the other cultivars tested. In the 2019-2020 season, less injury was recorded from plots without runners while the difference was not significant in 2017-2018 or 2018-2019. Releasing five and ten adult N. bilobata on ripe (red) fruit produced a similar level of injury while no injury to unripe (green) fruit was observed. Both adults and nymphs cause injury to ripe fruit. These findings can help contribute to the development of an integrated pest management program for strawberry N. bilobata.

18.
Insects ; 11(10)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32993000

ABSTRACT

Biological control has been the most commonly researched control tactic within fruit fly management programs. For the first time, a review is carried out covering parasitoids and predators of fruit flies (Tephritidae) from the Americas and Hawaii, presenting the main biological control programs in this region. In this work, 31 species of fruit flies of economic importance are considered in the genera Anastrepha (11), Rhagoletis (14), Bactrocera (4), Ceratitis (1), and Zeugodacus (1). In this study, a total of 79 parasitoid species of fruit flies of economic importance are listed and, from these, 50 are native and 29 are introduced. A total of 56 species of fruit fly predators occur in the Americas and Hawaii.

19.
Insects ; 11(4)2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32276313

ABSTRACT

Reports of severe infestations caused by southern red mites (SRM), Oligonychus ilicis McGregor (Acari: Tetranychidae), have increased in recent years in southern highbush blueberries (SHB). Currently, there is little known about the management of tetranychids in SHB, and only two miticides (fenazaquin and fenpyroximate) have recently been labeled for use in SHB. Oligonychus ilicis has caused up to 80%-100% losses in some blueberry plantings, and growers are looking for management tools for this new pest of blueberries. We report on injury to SHB from O. ilicis and the performance of seven miticides used to manage SRM populations, including spiromesifen, spiromesifen plus surfactant, vegetable oil concentrate, fenazaquin, "proprietary miticide" (referred to as Pro1), bifenazate, and fenpyroximate. Miticide efficacy was rated based on the number of SRM recorded on collected leaves and plant damage ratings using an arbitrary index (from 0 = no bronzing to 4 = 100% bronzing). Characteristic symptoms of leaf injury included purple or bronzed leaf color, leaf dryness and roughening. Fenpyroximate significantly reduced mite numbers three days after application. Additionally, plants treated with fenpyroximate or fenazaquin showed significantly less bronzing compared with the control plants. Overall, fenpyroximate and fenazaquin showed the best performance for the management of O. ilicis on SHB.

20.
Environ Entomol ; 49(1): 73-87, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31922551

ABSTRACT

Tomato chlorotic spot virus (TCSV) is an orthotospovirus that causes a devastating disease in tomato (Lycopersicon esculentum Miller). TCSV emerged recently in South Florida. Studies were conducted in three commercial tomato fields in Miami-Dade County, Florida during the vegetable-growing seasons from October to April in 2015 through 2017. Each year, data were collected at 3, 6, and 9 wk after transplanting at various distances from the edges of each fields. Based on 3 yr total samples, three species of thrips were commonly observed melon thrips, Thrips palmi Karny (62.16 ± 0.79%), being the most abundant species followed by common blossom thrips, Frankliniella schultzei Trybom (21.55 ± 0.66%), and western flower thrips, Frankliniella occidentalis (Pergande) (16.26 ± 0.61%). Abundance of all thrips and TCSV infected plants was high at the edge of a tomato field 3 wk after transplanting with significantly fewer infected plants toward the center of the field. The distribution patterns of thrips and TCSV in various fields were mostly regular and aggregated across the sampling dates during the study period. Abundance of TCSV symptomatic plants and thrips species was high at the edge of the field and increased over time. The number of samples required to accurately determine population density of thrips was calculated by using three precision levels (0.10, 0.20, 0.30) at three predetermined densities of thrips (0.10, 0.20, and 0.40 per sample). This information will provide guidelines to growers, crop protection personnel, agricultural scouts, and researchers to develop a sustainable thrips and tospovirus management program.


Subject(s)
Solanum lycopersicum/virology , Thysanoptera , Tospovirus , Animals , Florida , Vegetables
SELECTION OF CITATIONS
SEARCH DETAIL
...