Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Mater Chem B ; 11(28): 6685-6696, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37377023

ABSTRACT

The design and development of nanomaterials that could be used in nanomedicine are of fundamental importance to obtain smart nanosystems for the treatment of several diseases. Halloysite, because of its interesting features, represents a suitable nanomaterial for the delivery of different biologically active species. Among them, peptide nucleic acids (PNAs) have attracted considerable attention in recent decades for their potential applications in both molecular antisense diagnosis and as therapeutic agents, although up to now, the actual clinical applications have been very limited. Herein we report a systematic study on the supramolecular interaction of three differently charged PNAs with halloysite. Understanding the interaction mode of charged molecules with the clay surfaces represents a key factor for the future design and development of halloysite based materials which could be used for the delivery and subsequent intracellular release of PNA molecules. Thus, three different PNA tetramers, chosen as models, were synthesized and loaded onto the clay. The obtained nanomaterials were characterized using spectroscopic studies and thermogravimetric analysis, and their morphologies were studied using high angle annular dark field transmission electron microscopy (HAADF/STEM) coupled with Energy Dispersive X-ray spectroscopy (EDX). The aqueous mobility of the three different nanomaterials was investigated by dynamic light scattering (DLS) and ζ-potential measurements. The release of PNA tetramers from the nanomaterials was investigated at two different pH values, mimicking physiological conditions. Finally, to better understand the stability of the synthesized PNAs and their interactions with HNTs, molecular modelling calculations were also performed. The obtained results showed that PNA tetramers interact in different ways with HNT surfaces according to their charge which influences their kinetic release in media mimicking physiological conditions.


Subject(s)
Peptide Nucleic Acids , Clay , Peptide Nucleic Acids/chemistry , Delayed-Action Preparations , Spectrum Analysis , Kinetics
2.
Chemistry ; 29(28): e202300339, 2023 May 16.
Article in English | MEDLINE | ID: mdl-36939032

ABSTRACT

Structure-property correlations in the thiahelicene family are often not trivial beacuse most of the functional groups present on the helical scaffold modify the conjugation size of the π-system. Selecting fluorine-containing groups to provide strong inductive effects without interacting with low-lying orbitals of the system could be the way to overcome the issue. Here we report a study on three fluorine-functionalized tetrathia[7]helicenes, highlighting interesting correlations between the position of the functional groups and the conjugated skeleton properties. Helicenes Heli-F2 and Heli-CF-F2 were prepared by photoinduced isomerization-electrocyclization (the Mallory photocyclization) of the corresponding fluorinated benzodithienyl-ethenes Alk-F2 and Alk-CF-F2, which were prepared in high yields through stereo-conservative Stille reaction. Notably these helicenes were found to display green phosphorescence around 530-550 nm, and the studies suggest an efficient spin-orbit coupling mechanism in these high-energy triplet nonplanar conjugated molecules. Both helicenes and their precursors were thoroughly characterized by means of optical and electrochemical measurements, while DFT calculations enable a rationale on their structure-property correlations to be defined.

3.
Angew Chem Int Ed Engl ; 62(5): e202215468, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36409523

ABSTRACT

Helicenes combine two central themes in chemistry: extended π-conjugation and chirality. Hetero-atom doping preserves both characteristics and allows modulation of the electronic structure of a helicene. Herein, we report the (BO)2 -doped tetrathia[7]helicene 1, which was prepared from 2-methoxy-3,3'-bithiophene in four steps. 1 is formally derived by substituting two (Mes)B-O moieties in place of (H)C=C(H) fragments in two benzene rings of the parent tetrathia[7]helicene. X-ray crystallography revealed a dihedral angle of 50.26(9)° between the two terminal thiophene rings. The (P)-/(M)-1 enantiomers were separated by chiral HPLC and are configurationally stable at room temperature. The experimentally determined enantiomerization barrier of 27.4±0.1 kcal mol-1 is lower than that of tetrathia[7]helicene (39.4±0.1 kcal mol-1 ). The circular dichroism spectra of (P)- and (M)-1 show a perfect mirror-image relationship. 1 is a blue emitter (λem =411 nm) with a photoluminescence quantum efficiency of ΦPL =6 % (cf. tetrathia[7]helicene: λem ≈405 nm, ΦPL =5 %).

4.
J Colloid Interface Sci ; 620: 221-233, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35428004

ABSTRACT

The development of systems able to deliver genetic material into a target site is a challenge for modern medicine. Single-stranded peptide nucleic acids have attracted attention as promising therapeutic molecules for diagnostic and gene therapy. However, their poor cell membrane permeability represents a drawback for biomedical applications. Halloysite nanotubes (HNTs) are emerging materials in drug delivery applications both for their ability to penetrate cell membranes and for enhancing the solubility of drugs in biological media. Herein, we report the first example of the use of a nanocarrier based on halloysite labelled with fluorescent switchable halochromic oxazine molecules, to deliver a single-stranded peptide nucleic acids tetramer (PNAts) into living cells. The PNAts is covalently attached to halloysite (HNTs-PNA), whereas the fluorescent probe supramolecularly interacts with HNTs. The ability of the nanomaterial to bind complementary single-stranded DNA was assessed by resonance light scattering measurements. Finally, studies of cellular uptake were carried out by confocal laser scanning microscopy on normal and tumoral cell lines. This work highlights the usefulness of the covalent approach to generate HNTs-PNA nanomaterials for the potential targeting of future specific nucleic acids in living cells, which could open the doorway to novel possibilities for theranostic and gene therapy applications.


Subject(s)
Nanotubes , Peptide Nucleic Acids , Cell Line, Tumor , Clay/chemistry , Fluorescent Dyes , Nanotubes/chemistry
5.
ChemistryOpen ; 11(1): e202100265, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35060687

ABSTRACT

Triarylboranes containing linear or angular benzodithiophene moieties and bearing one or two dimesitylboron units were synthesized. The electrochemical and optical features of these compounds were investigated by cyclic voltammetry, UV/Vis and fluorescence spectroscopy while DFT calculations were run to analyze the energetic landscape of these systems. For both linear and angular benzodithiophenes, symmetrical disubstitution leads to the highest photoluminescence yields. The linear benzodithiophene disubstituted with two dimesitylboron units proved to be the most interesting and promising molecule as an electron-transport material for organic electronics owing to its LUMO energy level of -2.84 eV which is close to those of commonly used electron transport materials like bathocuproine or bathophenantroline.

6.
Angew Chem Int Ed Engl ; 61(6): e202114577, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34874602

ABSTRACT

A highly enantioselective synthesis of 5,13-disubstituted dibenzo[d,d']benzo[1,2-b:4,3-b']dithiophenes is reported. Key for the successful assembly of these helical architectures is the last two successive Au-catalyzed intramolecular alkyne hydroarylation events. Specifically, the second cyclization is the enantiodetermining step of the whole process and provides the desired helicenes with excellent ee values when a TADDOL-derived 1,2,3-(triazolium)phosphonite moiety (TADDOL: α,α,α',α'-tetraaryl-1,3-dioxolane-4,5-dimethanol) is employed as an ancillary ligand. The absolute stereochemistry of the newly prepared structures has been determined by X-ray crystallography to be P; the optical properties of these heterohelicenes are also reported. A three-step procedure was subsequently developed that allows the transformation of the initially obtained dithia[5]helicenes into dithia[9]helicenes without erosion of the enantiopurity.

7.
J Pharm Anal ; 11(5): 638-645, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34765277

ABSTRACT

The first combined experimental and theoretical study on the ionization and lipophilic properties of peptide nucleic acid (PNA) derivatives, including eleven PNA monomers and two PNA decamers, is described. The acidity constants (pKa) of individual acidic and basic centers of PNA monomers were measured by automated potentiometric pH titrations in water/methanol solution, and these values were found to be in agreement with those obtained by MoKa software. These results indicate that single nucleobases do not change their pKa values when included in PNA monomers and oligomers. In addition, immobilized artificial membrane chromatography was employed to evaluate the lipophilic properties of PNA monomers and oligomers, which showed the PNA derivatives had poor affinity towards membrane phospholipids, and confirmed their scarce cell penetrating ability. Overall, our study not only is of potential relevance to evaluate the pharmacokinetic properties of PNA, but also constitutes a reliable basis to properly modify PNA to obtain mimics with enhanced cell penetration properties.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-908784

ABSTRACT

The first combined experimental and theoretical study on the ionization and lipophilic properties of peptide nucleic acid(PNA)derivatives,including eleven PNA monomers and two PNA decamers,is described.The acidity constants(pKa)of individual acidic and basic centers of PNA monomers were measured by automated potentiometric pH titrations in water/methanol solution,and these values were found to be in agreement with those obtained by MoKa software.These results indicate that single nucleobases do not change their pKa values when included in PNA monomers and oligomers.In addition,immobilized artificial membrane chromatography was employed to evaluate the lipophilic properties of PNA monomers and oligomers,which showed the PNA derivatives had poor affinity towards membrane phospholipids,and confirmed their scarce cell penetrating ability.Overall,our study not only is of po-tential relevance to evaluate the pharmacokinetic properties of PNA,but also constitutes a reliable basis to properly modify PNA to obtain mimics with enhanced cell penetration properties.

9.
Inorg Chem ; 59(17): 12086-12096, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32805986

ABSTRACT

We present for the first time a method for the preparation of magnetic halloysite nanotubes (HNT) by loading of preformed superparamagnetic magnetite nanoparticles (SPION) of diameter size ∼6 nm with a hydrodynamic diameter of ∼10 nm into HNT. We found that the most effective route to reach this goal relies on the modification of the inner lumen of HNT by tetradecylphosphonic acid (TDP) to give HNT-TDP, followed by the loading with preformed oleic acid (OA)-stabilized SPION. Transmission electron microscopy evidenced the presence of highly crystalline magnetic nanoparticles only in the lumen, partially ordered in chainlike structures. Conversely, attempts to obtain the same result by exploiting either the positive charge of the HNT inner lumen employing SPIONs covered with negatively charged capping agents or the in situ synthesis of SPION by thermal decomposition were not effective. HNT-TDP were characterized by infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), and ζ-potential, and all of the techniques confirmed the presence of TDP onto the HNT. Moreover, the inner localization of TDP was ascertained by the use of Nile Red, a molecule whose luminescence is very sensitive to the polarity of the environment. The free SPION@OA (as a colloidal suspension and as a powder) and SPION-in-HNT powder were magnetically characterized by measuring the ZFC-FC magnetization curves as well as the hysteresis cycles at 300 and 2.5 K, confirming that the super-paramagnetic behavior and the main magnetic properties of the free SPION were preserved once embedded in SPION-in-HNT.

10.
Int J Mol Sci ; 21(6)2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32183450

ABSTRACT

The microRNAs are small RNAs that regulate gene expression at the post-transcriptional level and can be involved in the onset of neurodegenerative diseases and cancer. They are emerging as possible targets for antisense-based therapy, even though the in vivo stability of miRNA analogues is still questioned. We tested the ability of peptide nucleic acids, a novel class of nucleic acid mimics, to downregulate miR-9 in vivo in an invertebrate model organism, the ascidian Ciona intestinalis, by microinjection of antisense molecules in the eggs. It is known that miR-9 is a well-conserved microRNA in bilaterians and we found that it is expressed in epidermal sensory neurons of the tail in the larva of C. intestinalis. Larvae developed from injected eggs showed a reduced differentiation of tail neurons, confirming the possibility to use peptide nucleic acid PNA to downregulate miRNA in a whole organism. By identifying putative targets of miR-9, we discuss the role of this miRNA in the development of the peripheral nervous system of ascidians.


Subject(s)
Cell Differentiation , Ciona intestinalis , MicroRNAs , Neurogenesis , Neurons/metabolism , Peptide Nucleic Acids , Animals , Ciona intestinalis/embryology , Ciona intestinalis/genetics , Larva/genetics , Larva/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Peptide Nucleic Acids/genetics , Peptide Nucleic Acids/pharmacology
11.
RSC Adv ; 10(24): 13944-13948, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-35498455

ABSTRACT

The functionalization of halloysite nanotube (HNT) surfaces with aminosilanes is an important strategy for their further decoration with organic molecules to obtain hybrid inorganic-organic nanoarchitectures to be used in catalysis and drug delivery. The exact quantification of amino groups on the surface is an important aspect in view of the obtainment of systems with a known number of loaded molecules. In the present study, we describe a simple and reliable method for the correct quantification of groups present on HNT surfaces after their reaction with aminopropyltriethoxysilane (APTES). This method, applied for the first time to HNT chemistry, was based on the use of Fmoc groups as probes covalently bound to APTES and quantified by UV-Vis after release from the HNT-APTES-Fmoc system. Interestingly, this method showed great accordance with the already employed quantitative thermogravimetric analysis (TGA), with some benefits such as simple and non-destructive procedure, besides the possibility to monitor the deprotection reaction.

12.
Angew Chem Int Ed Engl ; 59(22): 8552-8559, 2020 May 25.
Article in English | MEDLINE | ID: mdl-31614054

ABSTRACT

We have studied the photophysics of tetrafurylethene, an aggregation-induced emission luminogen with exceptionally short intramolecular O-O distances of 2.80 Šand a significant red-shifted morphochromism (27 nm) when going from the aggregate to the crystal. The short O-O distances, which are substantially smaller than the sum of the van der Waals radii (3.04 Å), are due to the fact that the oxygen atoms act as an electronic bridge connecting the furan rings on opposite ends of the central double bond, giving rise to a circular delocalization of the π-electron density across the rings. In the excited state the O-O distance is further reduced to 2.70 Å; the increased O-O interaction causes a narrowing of the HOMO-LUMO gap, resulting in the red morphochromism of the emission. Our results show the structural origin of the red-shifted emission lies in close O-O contacts, paving the way for understanding the clusteroluminescence of oxygen-rich non-conjugated systems that emit visible light.

13.
Int J Mol Sci ; 20(20)2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31623150

ABSTRACT

Peptide Nucleic Acids (PNAs) are synthetic mimics of natural oligonucleotides, which bind complementary DNA/RNA strands with high sequence specificity. They display numerous advantages, but in vivo applications are still rare. One of the main drawbacks of PNAs application is the poor cellular uptake that could be overcome by using experimental models, in which microinjection techniques allow direct delivery of molecules into eggs. Thus, in this communication, we investigated PNAs efficiency in miR-7 downregulation and compared its effects with those obtained with the commercially available antisense molecule, Antagomir (Dharmacon) in the ascidian Ciona intestinalis. Ascidians are marine invertebrates closely related to vertebrates, in which PNA techniques have not been applied yet. Our results suggested that anti-miR-7 PNAs were able to reach their specific targets in the developing ascidian embryos with high efficiency, as the same effects were obtained with both PNA and Antagomir. To the best of our knowledge, this is the first evidence that unmodified PNAs can be applied in in vivo knockdown strategies when directly injected into eggs.


Subject(s)
Ciona intestinalis/genetics , Gene Knockdown Techniques , MicroRNAs/genetics , Peptide Nucleic Acids/pharmacology , Animals , Biomarkers , Gene Expression Profiling , Gene Silencing , Immunohistochemistry , MicroRNAs/chemistry , Molecular Structure , Oligonucleotides , Peptide Nucleic Acids/chemistry
14.
Chem Sci ; 10(5): 1539-1548, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30809372

ABSTRACT

Chiral electroanalysis could be regarded as the highest recognition degree in electrochemical sensing, implying the ability to discriminate between specular images of an electroactive molecule, particularly in terms of significant peak potential difference. A groundbreaking strategy was recently proposed, based on the use of "inherently chiral" molecular selectors, with chirality and key functional properties originating from the same structural element. Large differences in peak potentials have been observed for the enantiomers of different chiral molecules, also of applicative interest, using different selectors, all of them based on atropisomeric biheteroaromatic scaffolds of axial stereogenicity. However, helicene systems also provide inherently chiral building blocks with attractive features. In this paper the enantiodiscrimination performances of enantiopure inherently chiral films obtained by electrooxidation of a thiahelicene monomer with helicoidal stereogenicity are presented for the first time. The outstanding potentialities of this novel approach are evaluated towards chiral probes with different chemical nature and bulkiness, in comparison with a representative case of the so far exploited class of inherently chiral selectors with axial stereogenicity. It is also verified that the high enantiodiscrimination ability holds as well for electron spins, as for atropisomeric selectors.

15.
Data Brief ; 21: 2339-2349, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30555872

ABSTRACT

The data presented in this article are related to the research article entitled "An unconventional helical push-pull system for solar cells" (Dova et al., 2019). This article provides: a) the cyclic voltammogram plots in solution of helical push-pull sensitizers and the corresponding precursors; b) the visualization of the leading natural transition orbital (NTO) pairs obtained by theoretical calculation of frontiers orbitals; c) J/V curves of dye-sensitized solar cells (DSSC) sensitized by the dyes, without 3a,7a-dihydroxy-5b-cholic acid (CDCA) as co-adsorbent agent; d) 1H and 13C NMR spectra of dyes.

16.
ACS Appl Mater Interfaces ; 10(33): 27562-27569, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30071156

ABSTRACT

We devised and fabricated a chemosensor for determination of the genetically relevant 5'-GCGGCGGC-3' (G = guanine; C = cytosine) oligonucleotide. For that, we simultaneously electrosynthesized and electrode-immobilized a sequence-defined octakis(2,2'-bithien-5-yl) DNA hybridizing probe using both a "macromolecular imprinting in polymer strategy" and a sequence-programmable peptide nucleic acid (PNA) template. With electrochemical impedance spectroscopy (EIS) and surface plasmon resonance (SPR) transductions under stagnant-solution and flow injection analysis (FIA) conditions, respectively, we determined the above oligonucleotide with 200-pM EIS limit of detection. With its EIS-determined apparent imprinting factor of ∼4.0, the chemosensor was discriminative to both mismatched oligonucleotides and Dulbecco's modified Eagle's medium sample interferences.


Subject(s)
Oligonucleotides/analysis , Biosensing Techniques , DNA Probes , Dielectric Spectroscopy , Electrodes , Nucleic Acid Hybridization , Peptide Nucleic Acids
17.
ACS Omega ; 3(9): 11649-11654, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-31459261

ABSTRACT

A one-pot, multicomponent strategy was used to synthesize the first example of the dirhenium carbonyl coordination complex 2, in which the two metal atoms are connected through a chiral helical-shaped diphosphine oxide. Thanks to the flexibility of the helix of helicene 1, complex 2 was isolated in quite a good yield as a stable compound. It was characterized by analytical and spectroscopic techniques as well as by single-crystal X-ray analysis, which confirmed the chemical structure and the peculiar architecture of 2. In addition, computational studies were in agreement with the transitions observed in the experimental UV-vis spectrum, revealing the presence of two bands with maxima at about 520 (metal-to-ligand charge transfer) and 400 nm (IL).

18.
Chem Sci ; 8(4): 2629-2639, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28553498

ABSTRACT

In this work we have investigated the aggregation-induced emission (AIE) behaviour of 1,1,2,2-tetra(thiophen-2-yl)ethene (tetrathienylethene, TTE). The semi-locked and fully-locked derivatives (sl-TTE and fl-TTE) have been synthesized to better understand the mechanism behind the solid state photoluminescence of TTE. TTE is a typical AIEgen and its luminescence can be explained through the mechanistic understanding of the restriction of intramolecular motions (RIM). The emissive behaviour of TTE in the THF/water aggregates and crystal state have also been studied, revealing a remarkable red-shift of 35 nm. A similar red-shift emission of 37 nm from the THF/water aggregates to the crystal state is also observed for (E)-1,2-di(thiophen-2-yl)ethene (trans-dithienylethene, DTE). Crystal analysis has revealed that the emission red-shifts are ascribable to the presence of strong sulfur-sulfur (S···S) intra- and intermolecular interactions that are as close as 3.669 Å for TTE and 3.679 Å for DTE. These heteroatom interactions could help explain the photoluminescence of non-conventional luminophores as well as the luminescence of non-conjugated biomacromolecules.

19.
ACS Appl Mater Interfaces ; 9(4): 3948-3958, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28071057

ABSTRACT

A new strategy of simple, inexpensive, rapid, and label-free single-nucleotide-polymorphism (SNP) detection using robust chemosensors with piezomicrogravimetric, surface plasmon resonance, or capacitive impedimetry (CI) signal transduction is reported. Using these chemosensors, selective detection of a genetically relevant oligonucleotide under FIA conditions within 2 min is accomplished. An invulnerable-to-nonspecific interaction molecularly imprinted polymer (MIP) with electrochemically synthesized probes of hexameric 2,2'-bithien-5-yl DNA analogues discriminating single purine-nucleobase mismatch at room temperature was used. With density functional theory modeling, the synthetic procedures developed, and isothermal titration calorimetry quantification, adenine (A)- or thymine (T)-substituted 2,2'-bithien-5-yl functional monomers capable of Watson-Crick nucleobase pairing with the TATAAA oligodeoxyribonucleotide template or its peptide nucleic acid (PNA) analogue were designed. Characterized by spectroscopic techniques, molecular cavities exposed the ordered nucleobases on the 2,2'-bithien-5-yl polymeric backbone of the TTTATA hexamer probe designed to hybridize the complementary TATAAA template. In that way, an artificial TATAAA-promoter sequence was formed in the MIP. The purine nucleobases of this sequence are known to be recognized by RNA polymerase to initiate the transcription in eukaryotes. The hexamer strongly hybridized TATAAA with the complex stability constant KsTTTATA-TATAAA = ka/kd ≈ 106 M-1, as high as that characteristic for longer-chain DNA-PNA hybrids. The CI chemosensor revealed a 5 nM limit of detection, quite appreciable as for the hexadeoxyribonucleotide. Molecular imprinting increased the chemosensor sensitivity to the TATAAA analyte by over 4 times compared to that of the nonimprinted polymer. The herein-devised detection platform enabled the generation of a library of hexamer probes for typing the majority of SNP probes as well as studying a molecular mechanism of the complex transcription machinery, physics of single polymer molecules, and stable genetic nanomaterials.

20.
Chem Commun (Camb) ; 52(73): 10984-7, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27534612

ABSTRACT

Substituted phosphathiahelicenes have been prepared via a straightforward two-step procedure involving the regioselective bromination of a preformed helical scaffold, followed by palladium catalyzed coupling reactions. The new helicenes have been used as ligands in gold(i)-catalyzed [4+2] cyclizations of 1,6-enynes. The resulting dihydro-cyclopenta[b]naphthalene derivative was obtained in excellent yields and with up to 91% ee.

SELECTION OF CITATIONS
SEARCH DETAIL
...