Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 25: 104267, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31388521

ABSTRACT

This Data in Brief paper contains data (including images) from Quaternary sedimentary successions investigated along the Bol'shaya Balakhnya River and the Luktakh-Upper Taimyra-Logata river system on southern Taimyr Peninsula, NW Siberia (Russia). Marine foraminifera and mollusc fauna composition, extracted from sediment samples, is presented. The chronology (time of deposition) of the sediment successions is reconstructed from three dating methods; (i) radiocarbon dating of organic detritus (from lacustrine/fluvial sediment) and molluscs (marine sediment) as finite ages (usually <42 000 years) or as non-finite ages (>42 000-48 000 years) on samples/sediments beyond the radiocarbon dating limit; (ii) Electron Spin Resonance (ESR) dating on marine molluscs (up to ages >400 000 years); (iii) Optically Stimulated Luminescence (OSL) dating, usually effective up to 100-150 0000 years. Terrestrial Cosmogenic Nuclide (TCN) exposure dating has been applied to boulders resting on top of moraine ridges (Ice Marginal Zones). See (Möller et al., 2019) (doi.org/10.1016/j.earscirev.2019.04.004) for interpretation and discussion of all data.

2.
Sci Adv ; 4(6): eaat1513, 2018 06.
Article in English | MEDLINE | ID: mdl-29963632

ABSTRACT

Large rhyolitic volcanoes pose a hazard, yet the processes and signals foretelling an eruption are obscure. Satellite geodesy has revealed surface inflation signaling unrest within magma reservoirs underlying a few rhyolitic volcanoes. Although seismic, electrical, and potential field methods may illuminate the current configuration and state of these reservoirs, they cannot fully address the processes by which they grow and evolve on geologic time scales. We combine measurement of a deformed paleoshore surface, isotopic dating of volcanism and surface exposure, and modeling to determine the rate of growth of a rhyolite-producing magma reservoir. The numerical approach builds on a magma intrusion model developed to explain the current, decade-long, surface inflation at >20 cm/year. Assuming that the observed 62-m uplift reflects several non-eruptive intrusions of magma, each similar to the unrest over the past decade, we find that ~13 km3 of magma recharged the reservoir at a depth of ~7 km during the Holocene, accompanied by the eruption of ~9 km3 of rhyolite. The long-term rate of magma input is consistent with reservoir freezing and pluton formation. Yet, the unique set of observations considered here implies that large reservoirs can be incubated and grow at shallow depth via episodic high-flux magma injections. These replenishment episodes likely drive rapid inflation, destabilize cooling systems, propel rhyolitic eruptions, and thus should be carefully monitored.

3.
Science ; 325(5948): 1677-9, 2009 Sep 25.
Article in English | MEDLINE | ID: mdl-19779196

ABSTRACT

The role of the tropics in triggering, transmitting, and amplifying interhemispheric climate signals remains a key debate in paleoclimatology. Tropical glacier fluctuations provide important insight on regional paleoclimatic trends and forcings, but robust chronologies are scarce. Here, we report precise moraine ages from the Cordillera Vilcabamba (13 degrees 20'S) of southern Peru that indicate prominent glacial events and associated climatic shifts in the outer tropics during the early Holocene and late in the "Little Ice Age" period. Our glacier chronologies differ from the New Zealand record but are broadly correlative with well-dated glacial records in Europe, suggesting climate linkages between the tropics and the North Atlantic region.

SELECTION OF CITATIONS
SEARCH DETAIL
...