Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(20)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096720

ABSTRACT

While necroptosis has been shown to contribute to the pathogenesis of post-infarction heart failure (HF), the role of autophagy remains unclear. Likewise, linkage between these two cell death modalities has not been sufficiently investigated. HF was induced by 60-min left coronary occlusion in adult Wistar rats and heart function was assessed 6 weeks later followed by immunoblotting analysis of necroptotic and autophagic proteins in both the left (LV) and right ventricle (RV). HF had no effect on RIP1 and RIP3 expression. PhosphoSer229-RIP3, acting as a pro-necroptotic signal, was increased in LV while deceased in RV of failing hearts. Total MLKL was elevated in RV only. Decrease in pSer555-ULK1, increase in pSer473-Akt and no significant elevation in beclin-1 and LC3-II/I ratio indicated rather a lowered rate of autophagy in LV. No beclin-1 upregulation and decreased LC3 processing also suggested the inhibition of both autophagosome formation and maturation in RV of failing hearts. In contrast, p89 PARP1 fragment, a marker of executed apoptosis, was increased in RV only. This is the first study showing a different signaling in ventricles of the late phase of post-infarction HF, highlighting necroptosis itself rather than its linkage with autophagy in LV, and apoptosis in RV.


Subject(s)
Apoptosis , Heart Failure/pathology , Myocardial Infarction/pathology , Animals , Apoptosis/physiology , Autophagy/physiology , Heart Failure/etiology , Heart Failure/metabolism , Heart Ventricles/pathology , Male , Myocardial Infarction/complications , Necroptosis/physiology , Organ Size , Protein Serine-Threonine Kinases/metabolism , Rats, Sprague-Dawley , Rats, Wistar , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction
2.
Insect Biochem Mol Biol ; 122: 103376, 2020 07.
Article in English | MEDLINE | ID: mdl-32339620

ABSTRACT

EFLamide (EFLa) is a neuropeptide known for a long time from crustaceans, chelicerates and myriapods. Recently, EFLa-encoding genes were identified in the genomes of apterygote hexapods including basal insect species. In pterygote insects, however, evidence of EFLa was limited to partial sequences in the bed bug (Cimex), migratory locust and a few phasmid species. Here we present identification of a full length EFLa-encoding transcript in the linden bug, Pyrrhocoris apterus (Heteroptera). We created complete null mutants allowing unambiguous anatomical location of this peptide in the central nervous system. Only 2-3 EFLa-expressing cells are located very close to each other near to the surface of the lateral protocerebrum with dense neuronal arborization. Homozygous null EFLa mutants are fully viable and do not have any visible defect in development, reproduction, lifespan, diapause induction or circadian rhythmicity. Phylogenetic analysis revealed that EFLa-encoding transcripts are produced by alternative splicing of a gene that also produces Prohormone-4. However, this Proh-4/EFLa connection is found only in Hemiptera and Locusta, whereas EFLa-encoding transcripts in apterygote hexapods, chelicerates and crustaceans are clearly distinct from Proh-4 genes. The exact mechanism leading to the fused Proh-4/EFLa transcript is not yet determined, and might be a result of canonical cis-splicing, cis-splicing of adjacent genes (cis-SAG), or trans-splicing.


Subject(s)
Heteroptera/genetics , Insect Proteins/genetics , Neuropeptides/genetics , Amino Acid Sequence , Animals , Female , Heteroptera/metabolism , Insect Proteins/chemistry , Insect Proteins/metabolism , Male , Neuropeptides/chemistry , Neuropeptides/metabolism , Phylogeny , Sequence Alignment , Thyrotropin-Releasing Hormone/genetics , Thyrotropin-Releasing Hormone/metabolism
3.
J Cell Mol Med ; 23(9): 6429-6441, 2019 09.
Article in English | MEDLINE | ID: mdl-31328381

ABSTRACT

Necroptosis has been recognized in heart failure (HF). In this study, we investigated detailed necroptotic signalling in infarcted and non-infarcted areas separately and its mechanistic link with main features of HF. Post-infarction HF in rats was induced by left coronary occlusion (60 minutes) followed by 42-day reperfusion. Heart function was assessed echocardiographically. Molecular signalling and proposed mechanisms (oxidative stress, collagen deposition and inflammation) were investigated in whole hearts and in subcellular fractions when appropriate. In post-infarction failing hearts, TNF and pSer229-RIP3 levels were comparably increased in both infarcted and non-infarcted areas. Its cytotoxic downstream molecule p-MLKL, indicating necroptosis execution, was detected in infarcted area. In non-infarcted area, despite increased pSer229-RIP3, p-MLKL was present in neither whole cells nor the cell membrane known to be associated with necroptosis execution. Likewise, increased membrane lipoperoxidation and NOX2 levels unlikely promoted pro-necroptotic environment in non-infarcted area. Collagen deposition and the inflammatory csp-1-IL-1ß axis were active in both areas of failing hearts, while being more pronounced in infarcted tissue. Although apoptotic proteins were differently expressed in infarcted and non-infarcted tissue, apoptosis was found to play an insignificant role. p-MLKL-driven necroptosis and inflammation while inflammation only (without necroptotic cell death) seem to underlie fibrotic healing and progressive injury in infarcted and non-infarcted areas of failing hearts, respectively. Upregulation of pSer229-RIP3 in both HF areas suggests that this kinase, associated with both necroptosis and inflammation, is likely to play a dual role in HF progression.


Subject(s)
Heart Failure/metabolism , Inflammation/metabolism , Myocardial Infarction/metabolism , Necroptosis/physiology , Signal Transduction/physiology , Animals , Apoptosis/physiology , Cell Death/physiology , Male , Myocytes, Cardiac/metabolism , Necrosis/metabolism , Oxidative Stress/physiology , Rats , Rats, Sprague-Dawley , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Up-Regulation/physiology
4.
J Cell Mol Med ; 22(9): 4183-4196, 2018 09.
Article in English | MEDLINE | ID: mdl-29921042

ABSTRACT

Necroptosis, a form of cell loss involving the RIP1-RIP3-MLKL axis, has been identified in cardiac pathologies while its inhibition is cardioprotective. We investigated whether the improvement of heart function because of ischaemic preconditioning is associated with mitigation of necroptotic signaling, and these effects were compared with a pharmacological antinecroptotic approach targeting RIP1. Langendorff-perfused rat hearts were subjected to ischaemic preconditioning with or without a RIP1 inhibitor (Nec-1s). Necroptotic signaling and the assessment of oxidative damage and a putative involvement of CaMKII in this process were analysed in whole tissue and subcellular fractions. Ischaemic preconditioning, Nec-1s and their combination improved postischaemic heart function recovery and reduced infarct size to a similar degree what was in line with the prevention of MLKL oligomerization and translocation to the membrane. On the other hand, membrane peroxidation and apoptosis were unchanged by either approach. Ischaemic preconditioning failed to ameliorate ischaemia-reperfusion-induced increase in RIP1 and RIP3 while pSer229-RIP3 levels were reduced only by Nec-1s. In spite of the additive phosphorylation of CaMKII and PLN because of ditherapy, the postischaemic contractile force and relaxation was comparably improved in all the intervention groups while antiarrhythmic effects were observed in the ischaemic preconditioning group only. Necroptosis inhibition seems to be involved in cardioprotection of ischaemic preconditioning and is comparable but not intensified by an anti-RIP1 agent. Changes in oxidative stress nor CaMKII signaling are unlikely to explain the beneficial effects.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Imidazoles/pharmacology , Indoles/pharmacology , Ischemic Preconditioning, Myocardial , Myocardial Reperfusion Injury/therapy , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Animals , Apoptosis/drug effects , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Gene Expression Regulation , Heart/drug effects , Heart/physiopathology , Male , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Necrosis/genetics , Necrosis/metabolism , Necrosis/pathology , Necrosis/prevention & control , Organ Culture Techniques , Oxidative Stress , Phosphorylation/drug effects , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein Transport/drug effects , Rats , Rats, Wistar , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction
5.
Curr Pharm Des ; 22(42): 6451-6458, 2016.
Article in English | MEDLINE | ID: mdl-27526788

ABSTRACT

BACKGROUND: It is known that statins possess beneficial cardioprotective effects irrespective of lipidlowering action and that cardiac injury due ischemia/reperfusion is associated with Ca2+ dysregulation resulting in contractile dysfunction. OBJECTIVE: With this background, we tested a hypothesis that simvastatin influences signaling of Ca2+/calmodulindependent protein kinase IIδ (CaMKIIδ), a protein kinase regulating both Ca2+ homeostasis and thick filament function, and thereby might underlie the mitigation of ischemia/reperfusion (I/R)-induced cardiac dysfunction. METHOD: Isolated hearts of control and simvastatin-treated (p.o. 10 mg/kg, 5 days) rats were subjected to global I and R and Western blotting was used to study the expression/activation of certain signaling proteins. RESULTS: Simvastatin treatment did not modify the plasma lipid levels; however, it recovered depressed cardiac performance and reduced reperfusion arrhythmias without affecting the activation of CaMKIIδ through phosphorylation of Thr287. Activation of its downstreams, such as phospholamban (PLN) and cardiac myosin-binding protein C (cMyBP-C) at Thr17 and Ser282, respectively, was in accordance with the levels of pThr287-CaMKIIδ. Total expression of these proteins, however, did not follow the same pattern and was either unchanged (CaMKIIδ, cMYBP-C) or increased (PLN). Likewise, PLN/SERCA2a (sarco/endoplasmic reticulum Ca2+-ATPase 2a) ratio in I/R hearts was unaffected by the treatment. On the other hand, simvastatin reversed the increased protein expression of protein phosphatase 1ß (PP1ß), but not protein phosphatase 2A (PP2A), in I/R hearts. CONCLUSION: A lower rate of dephosphorylation and thereby a delay in inactivation of phosphorylated proteins due to a decrease in PP1ß, rather than effects on phosphorylation of CaMKIIδ and its downstreams, such as PLN and cMyBP-C, may underlie beneficial effects of simvastatin in I/R hearts.


Subject(s)
Calcium/metabolism , Cardiotonic Agents/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Muscle Proteins/metabolism , Myocardial Reperfusion Injury/metabolism , Simvastatin/pharmacology , Administration, Oral , Animals , Lipids/blood , Male , Myofibrils/drug effects , Myofibrils/metabolism , Rats , Rats, Wistar , Simvastatin/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...