Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 75(3): 1364-70, 1993 Sep.
Article in English | MEDLINE | ID: mdl-8226552

ABSTRACT

We studied the influence of diaphragmatic fatigue on the control of ventilation and respiratory muscle contribution to pressure swings in six normal seated subjects. CO2 was rebreathed before and after diaphragmatic fatigue induced by breathing against an inspiratory resistance requiring 60% maximal transdiaphragmatic pressure with each breath until exhaustion. After diaphragmatic fatigue for a given level of end-tidal PCO2, we found that tidal volume, breathing frequency, minute ventilation, duty cycle, and mean inspiratory flow did not change; esophageal pressure swings were the same, but gastric and transdiaphragmatic pressure swings were decreased; and the slope of the transpulmonary pressure-gastric pressure relationship determined at zero flow points at end expiration and end inspiration was increased. End-expiratory transpulmonary pressure progressively decreased and end-expiratory gastric pressure progressively increased with increasing end-tidal PCO2 by the same magnitude before and after diaphragmatic fatigue. We conclude that diaphragmatic fatigue induces proportionately greater contributions of inspiratory rib cage muscles than of the diaphragm, which results in the preservation of ventilatory response to CO2 despite impaired diaphragmatic contractility.


Subject(s)
Carbon Dioxide , Diaphragm/physiology , Respiration/physiology , Respiratory Muscles/physiology , Adult , Esophagus/physiology , Humans , Male , Middle Aged , Pressure , Stomach/physiology
2.
J Appl Physiol (1985) ; 75(3): 1371-7, 1993 Sep.
Article in English | MEDLINE | ID: mdl-8226553

ABSTRACT

We evaluated the effect of global inspiratory muscle fatigue on ventilation and respiratory muscle control during CO2 rebreathing in normal subjects. Fatigue was induced by breathing against a high inspiratory resistance until exhaustion. CO2 response curves were measured before and after fatigue. During CO2 rebreathing, global fatigue caused a decreased tidal volume (VT) and an increased breathing frequency but did not change minute ventilation, duty cycle, or mean inspiratory flow. Both esophageal and transdiaphragmatic pressure swings were significantly reduced after global fatigue, suggesting decreased contribution of both rib cage muscles and diaphragm to breathing. End-expiratory transpulmonary pressure for a given CO2 was lower after fatigue, indicating an additional decrease in end-expiratory lung volume due to expiratory muscle recruitment, which leads to a greater initial portion of inspiration being passive. This, combined with the reduction in VT, decreased the fraction of VT attributable to inspiratory muscle contribution; therefore the inspiratory muscle elastic work and power per breath were significantly reduced. We conclude that respiratory control mechanisms are plastic and that the respiratory centers alter their output in a manner appropriate to the contractile state of the respiratory muscles to conserve the ventilatory response to CO2.


Subject(s)
Carbon Dioxide/pharmacology , Respiration , Respiratory Muscles/drug effects , Respiratory Muscles/physiology , Adult , Diaphragm/physiology , Esophagus/physiology , Humans , Lung Volume Measurements , Male , Pressure , Stomach/physiology , Tidal Volume
SELECTION OF CITATIONS
SEARCH DETAIL
...