Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 22(2): 410-26, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25723943

ABSTRACT

Analysis of the oxidation state and coordination geometry using pre-edge analysis is attractive for heterogeneous catalysis and materials science, especially for in situ and time-resolved studies or highly diluted systems. In the present study, focus is laid on iron-based catalysts. First a systematic investigation of the pre-edge region of the Fe K-edge using staurolite, FePO4, FeO and α-Fe2O3 as reference compounds for tetrahedral Fe(2+), tetrahedral Fe(3+), octahedral Fe(2+) and octahedral Fe(3+), respectively, is reported. In particular, high-resolution and conventional X-ray absorption spectra are compared, considering that in heterogeneous catalysis and material science a compromise between high-quality spectroscopic data acquisition and simultaneous analysis of functional properties is required. Results, which were obtained from reference spectra acquired with different resolution and quality, demonstrate that this analysis is also applicable to conventionally recorded pre-edge data. For this purpose, subtraction of the edge onset is preferentially carried out using an arctangent and a first-degree polynomial, independent of the resolution and quality of the data. For both standard and high-resolution data, multiplet analysis of pre-edge features has limitations due to weak transitions that cannot be identified. On the other hand, an arbitrary empirical peak fitting assists the analysis in that non-local transitions can be isolated. The analysis of the oxidation state and coordination geometry of the Fe sites using a variogram-based method is shown to be effective for standard-resolution data and leads to the same results as for high-resolution spectra. This method, validated by analysing spectra of reference compounds and their well defined mixtures, is finally applied to track structural changes in a 1% Fe/Al2O3 and a 0.5% Fe/BEA zeolite catalyst during reduction in 5% H2/He. The results, hardly accessible by other techniques, show that Fe(3+) is transformed into Fe(2+), while the local Fe-O coordination number of 4-5 is maintained, suggesting that the reduction involves a rearrangement of the oxygen neighbours rather than their removal. In conclusion, the variogram-based analysis of Fe K-edge spectra proves to be very useful in catalysis research.

2.
Chemphyschem ; 13(6): 1557-61, 2012 Apr 23.
Article in English | MEDLINE | ID: mdl-22407573

ABSTRACT

The micro-segmented flow technique was applied for continuous synthesis of ZnO micro- and nanoparticles with short residence times of 9.4 s and 21.4 s, respectively. The obtained particles were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Small angle X-ray scattering (SAXS) and photoluminescence spectroscopy were used to determine the size and optical properties of ZnO nanoparticles. In addition, extended X-ray absorption fine structure (EXAFS) spectroscopy was employed to investigate local structural properties. The EXAFS measurements reveal a larger degree of structural disorder in the nanoparticles than the microparticles. These structural changes should be taken into consideration while evaluating the size-dependent visible emission of ZnO nanoparticles.

3.
Environ Technol ; 30(12): 1281-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19950470

ABSTRACT

Over the last decade X-ray absorption near edge structure (XANES) spectroscopy has been used in an increasing number of microbiological studies. In addition to other applications it has served as a valuable tool for the investigation of the sulphur globules deposited intra- or extracellularly by certain photo- and chemotrophic sulphur-oxidizing (Sox) bacteria. For XANES measurements, these deposits can easily be concentrated by filtration or sedimentation through centrifugation. However, during oxidative metabolism of reduced sulphur compounds, such as sulphide or thiosulphate, sulphur deposits are not the only intermediates formed. Soluble intermediates such as sulphite may also be produced and released into the medium. In this study, we explored the potential of XANES spectroscopy for the detection and speciation of sulphur compounds in culture supernatants of the phototrophic purple sulphur bacterium Allochromatium vinosum. More specifically, we investigated A. vinosum DeltasoxY, a strain with an in frame deletion of the soxY gene. This gene encodes an essential component of the thiosulphate-oxidizing Sox enzyme complex. Improved sample preparation techniques developed for the DeltasoxY strain allowed for the first time not only the qualitative but also the quantitative analysis of bacterial culture supernatants by XANES spectroscopy. The results thus obtained verified and supplemented conventional HPLC analysis of soluble sulphur compounds. Sulphite and also oxidized organic sulphur compounds were shown by XANES spectroscopy to be present, some of which were not seen when standard HPLC protocols were used.


Subject(s)
Bacteria/metabolism , Sulfur/metabolism , X-Ray Absorption Spectroscopy/methods , Chromatography, High Pressure Liquid , Thiosulfates/metabolism
4.
Microbiology (Reading) ; 155(Pt 8): 2766-2774, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19423634

ABSTRACT

Before its uptake and oxidation by purple sulfur bacteria, elemental sulfur probably first has to be mobilized. To obtain more insight into this mobilization process in the phototrophic purple sulfur bacterium Allochromatium vinosum, we used HPLC analysis and X-ray absorption near-edge structure (XANES) spectroscopy for the detection and identification of sulfur compounds in culture supernatants and bacterial cells. We intended to identify soluble sulfur compounds that specifically occur during growth on elemental sulfur, and therefore compared spectra of cultures grown on sulfur with those of cultures grown on sulfide or thiosulfate. While various unexpected oxidized organic sulfur species (sulfones, C-SO(2)-C, and sulfonates, C-SO(3)(-)) were observed via XANES spectroscopy in the supernatants, we obtained evidence for the presence of monosulfane sulfonic acids inside the bacterial cells by HPLC analysis. The concentrations of the latter compounds showed a tight correlation with the content of intracellular sulfur, reaching their maximum when sulfur began to be oxidized. None of the detected sulfur compounds appeared to be a specific soluble intermediate or product of elemental sulfur mobilization. It therefore seems unlikely that mobilization of elemental sulfur by purple sulfur bacteria involves excretion of soluble sulfur-containing substances that would be able to act on substrate distant from the cells.


Subject(s)
Chromatium/chemistry , Chromatium/metabolism , Extracellular Space/chemistry , Intracellular Space/chemistry , Sulfur/metabolism , Chromatium/growth & development , Chromatography, High Pressure Liquid , Culture Media/chemistry , Periplasm/chemistry , Periplasm/metabolism , Spectrum Analysis , Sulfides/chemistry , Sulfides/metabolism , Sulfones/chemistry , Sulfones/metabolism , Sulfonic Acids/chemistry , Sulfonic Acids/metabolism , Sulfur/chemistry , Thiosulfates/chemistry , Thiosulfates/metabolism
5.
J Bacteriol ; 189(20): 7525-9, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17644590

ABSTRACT

The Firmicutes Thermoanaerobacter sulfurigignens and Thermoanaerobacterium thermosulfurigenes convert thiosulfate, forming sulfur globules inside and outside cells. X-ray absorption near-edge structure analysis revealed that the sulfur consisted mainly of sulfur chains with organic end groups similar to sulfur formed in purple sulfur bacteria, suggesting the possibility that the process of sulfur globule formation by bacteria is an ancient feature.


Subject(s)
Sulfur Compounds/analysis , Thermoanaerobacter/chemistry , Thermoanaerobacterium/chemistry , Thiosulfates/metabolism , Organic Chemicals/analysis , Spectrum Analysis/methods , Thermoanaerobacter/metabolism , Thermoanaerobacterium/metabolism
6.
Microbiology (Reading) ; 153(Pt 4): 1268-1274, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17379736

ABSTRACT

The purple sulfur bacterium Allochromatium vinosum can use elemental sulfur as an electron donor for anoxygenic photosynthesis. The elemental sulfur is taken up, transformed into intracellular sulfur globules and oxidized to sulfate. Commercially available "elemental" sulfur usually consists of the two species cyclo-octasulfur and polymeric sulfur. The authors investigated whether only one sulfur species is used or at least preferred when Alc. vinosum takes up elemental sulfur and forms globules. To this end, Alc. vinosum was cultivated photolithoautotrophically with two types of elemental sulfur that differed in their cyclo-octasulfur : polymeric sulfur ratio, as well as with pure polymeric sulfur. Sulfur speciation was analysed using X-ray absorption spectroscopy, and sulfate contents were determined by HPLC to quantify the amount of elemental sulfur being taken up and oxidized by Alc. vinosum. The results show that Alc. vinosum uses only the polymeric sulfur (sulfur chain) fraction of elemental sulfur and is probably unable to take up and form sulfur globules from cyclo-octasulfur. Furthermore, direct cell-sulfur contact appears to be necessary for uptake of elemental sulfur by Alc. vinosum.


Subject(s)
Chromatium/metabolism , Sulfur/metabolism , Oxidation-Reduction , Phototrophic Processes , Spectrum Analysis , X-Rays
7.
FEMS Microbiol Lett ; 269(1): 54-62, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17227465

ABSTRACT

Most transformations within the sulfur cycle are controlled by the biosphere, and deciphering the abiotic and biotic nature and turnover of sulfur is critical to understand the geochemical and ecological changes that have occurred throughout the Earth's history. Here, synchrotron radiation-based sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy is used to examine sulfur speciation in natural microbial mats from two aphotic (cave) settings. Habitat geochemistry, microbial community compositions, and sulfur isotope systematics were also evaluated. Microorganisms associated with sulfur metabolism dominated the mats, including members of the Epsilonproteobacteria and Gammaproteobacteria. These groups have not been examined previously by sulfur K-edge XANES. All of the mats consisted of elemental sulfur, with greater contributions of cyclo-octasulfur (S8) compared with polymeric sulfur (Smicro). While this could be a biological fingerprint for some bacteria, the signature may also indicate preferential oxidation of Smicro and S8 accumulation. Higher sulfate content correlated to less S8 in the presence of Epsilonproteobacteria. Sulfur isotope compositions confirmed that sulfur content and sulfur speciation may not correlate to microbial metabolic processes in natural samples, thereby complicating the interpretation of modern and ancient sulfur records.


Subject(s)
Sulfur/chemistry , Water Microbiology , Water/chemistry , Epsilonproteobacteria/growth & development , Epsilonproteobacteria/metabolism , Gammaproteobacteria/growth & development , Gammaproteobacteria/metabolism , Spectrum Analysis/methods , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...