ABSTRACT
A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.
ABSTRACT
The Bethe-Slater (BS) curve describes the relation between the exchange coupling and interatomic distance. Based on a simple argument of orbital overlaps, it successfully predicts the transition from antiferromagnetism to ferromagnetism, when traversing the 3d series. In a previous article [Phys. Rev. Lett. 116, 217202 (2016)] we reported that the dominant nearestneighbour (NN) interaction for 3d metals in the bcc structure indeed follows the BS curve, but the trends through the series showed a richer underlying physics than was initially assumed. The orbital decomposition of the inter-site exchange couplings revealed that various orbitals contribute to the exchange interactions in a highly non-trivial and sometimes competitive way. In this communication we perform a deeper analysis by comparing 3d metals in the bcc and fcc structures. We find that there is no coupling between the E g orbitals of one atom and T 2g orbitals of its NNs, for both cubic phases. We demonstrate that these couplings are forbidden by symmetry and formulate a general rule allowing to predict when a similar situation is going to happen. In γ-Fe, as in α-Fe, we find a strong competition in the symmetry-resolved orbital contributions and analyse the differences between the high-spin and low-spin solutions.