Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 110(3): 492-510, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15712010

ABSTRACT

Large-insert bacterial artificial chromosome (BAC) libraries, plant-transformation-competent binary BAC (BIBAC) libraries, and simple sequence repeat (SSR) markers are essential for many aspects of genomics research. We constructed a BAC library and a BIBAC library from the nuclear DNA of chickpea, Cicer arietinum L., cv. Hadas, partially digested with HindIII and BamHI, respectively. The BAC library has 14,976 clones, with an average insert size of 121 kb, and the BIBAC library consists of 23,040 clones, with an average insert size of 145 kb. The combined libraries collectively cover ca. 7.0 x genomes of chickpea. We screened the BAC library with eight synthetic SSR oligos, (GA)10, (GAA)7, (AT)10, (TAA)7, (TGA)7, (CA)10, (CAA)7, and (CCA)7. Positive BACs were selected, subcloned, and sequenced for SSR marker development. Two hundred and thirty-three new chickpea SSR markers were developed and characterized by PCR, using chickpea DNA as template. These results have demonstrated that BACs are an excellent source for SSR marker development in chickpea. We also estimated the distribution of the SSR loci in the chickpea genome. The SSR motifs (TAA)n and (GA)n were much more abundant than the others, and the distribution of the SSR loci appeared non-random. The BAC and BIBAC libraries and new SSR markers will provide valuable resources for chickpea genomics research and breeding (the libraries and their filters are available to the public at http://hbz.tamu.edu).


Subject(s)
Cicer/genetics , Gene Library , Genetic Markers/genetics , Genome, Plant , Base Sequence , Chromosomes, Artificial, Bacterial , Cloning, Molecular , DNA Primers , Minisatellite Repeats/genetics , Molecular Sequence Data , Oligonucleotides , Sequence Analysis, DNA
2.
Phytopathology ; 92(4): 417-23, 2002 Apr.
Article in English | MEDLINE | ID: mdl-18942955

ABSTRACT

ABSTRACT Historically, the response of chickpea (Cicer arietinum L.) to Didymella rabiei (causal agent of Ascochyta blight) has been mainly related to as complete resistance and it was commonly assayed with qualitative (nonparametric) scales. Two reciprocal populations, derived from intra-specific crosses between a moderately resistant late flowering Israeli cultivar and a highly susceptible early flowering Indian accession, were tested at F(3) and F(4) generations in 1998 and 1999, respectively. A quantitative (parametric) assessment (percent disease severity) was used to evaluate the chickpea field response to Ascochyta blight. The transformed relative area under the disease progress curve (tRAUDPC) was calculated for each experimental unit for further analyses. Heritability estimates of the tRAUDPC were relatively high (0.67 to 0.85) in both generations for both reciprocal populations. The frequency distributions of tRAUDPC of the populations were continuous and significantly departed from normality (Shapiro-Wilk W test; P of W < 0.0001), being all platykurtic and skewed toward either the resistant or the susceptible parental lines. The presence of major genes was examined by testing the relationship between the F(3) and F(4) family means and the within-family variances (Fain's test). Analyses of these relationships suggested that segregation of a single (or few) quantitative trait locus with major effect and possibly other minor loci was the predominant mode of inheritance. The correlation estimates between the resistance and days to flower (r = -0.19 to -0.44) were negative and significantly (P = 0.054 to 0.001) different from zero, which represents a breeding constraint in the development of early flowering cultivars with Ascochyta blight resistance.

3.
Am J Bot ; 87(7): 1058-65, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10898783

ABSTRACT

Chromosome numbers and meiotic behavior are reported for the climbing cacti species Hylocereus undatus, Hylocereus polyrhizus, and Selenicereus megalanthus. The Hylocereus spp. are diploid (2n = 22), while S. megalanthus is a tetraploid (2n = 44). Irregular chromosome disjunction at anaphase I in pollen mother cells of S. megalanthus is probably the major cause of its reduced pollen viability and may contribute to low seed set, low number of viable seeds and, consequently, low fruit mass. A pollination study confirmed self-incompatibility in H. polyrhizus and a weakened incompatibility reaction in H. undatus and S. megalanthus. Major crossability barriers do not exist between the Hylocereus spp. investigated. Reciprocal intergeneric crosses were successful between Hylocereus spp. and S. megalanthus, suggesting that an Hylocereus sp. might be one of the diploid progenitors of the tetraploid S. megalanthus. The implications of the results on cacti nomenclature and systematics are briefly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...