Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35563506

ABSTRACT

It is a longstanding question whether universality or specificity characterize the molecular dynamics underlying the glass transition of liquids. In particular, there is an ongoing debate to what degree the shape of dynamical susceptibilities is common to various molecular glass formers. Traditionally, results from dielectric spectroscopy and light scattering have dominated the discussion. Here, we show that nuclear magnetic resonance (NMR), primarily field-cycling relaxometry, has evolved into a valuable method, which provides access to both translational and rotational motions, depending on the probe nucleus. A comparison of 1H NMR results indicates that translation is more retarded with respect to rotation for liquids with fully established hydrogen-bond networks; however, the effect is not related to the slow Debye process of, for example, monohydroxy alcohols. As for the reorientation dynamics, the NMR susceptibilities of the structural (α) relaxation usually resemble those of light scattering, while the dielectric spectra of especially polar liquids have a different broadening, likely due to contributions from cross correlations between different molecules. Moreover, NMR relaxometry confirms that the excess wing on the high-frequency flank of the α-process is a generic relaxation feature of liquids approaching the glass transition. However, the relevance of this feature generally differs between various methods, possibly because of their different sensitivities to small-amplitude motions. As a major advantage, NMR is isotope specific; hence, it enables selective studies on a particular molecular entity or a particular component of a liquid mixture. Exploiting these possibilities, we show that the characteristic Cole-Davidson shape of the α-relaxation is retained in various ionic liquids and salt solutions, but the width parameter may differ for the components. In contrast, the low-frequency flank of the α-relaxation can be notably broadened for liquids in nanoscopic confinements. This effect also occurs in liquid mixtures with a prominent dynamical disparity in their components.


Subject(s)
Glass , Magnetic Resonance Imaging , Alcohols/chemistry , Animals , Hydrogen Bonding , Magnetic Resonance Spectroscopy/methods
2.
Magn Reson Chem ; 57(10): 805-817, 2019 08.
Article in English | MEDLINE | ID: mdl-30604576

ABSTRACT

With the availability of commercial field-cycling relaxometers together with progress of home-built instruments nuclear magnetic resonance relaxometry has gained new momentum as a method of investigating the dynamics in viscous liquids and polymer melts. The method provides the frequency dependence of the spin-lattice relaxation rate. In the case of protons, one distinguishes intramolecular and intermolecular relaxation pathways. Whereas the intramolecular contribution prevails at high frequencies and reflects rotational dynamics, the often ignored intermolecular relaxation contribution dominates at low-frequency and provides access to translational dynamics. A universal low-frequencies dispersion law holds which in pure systems allows determining the diffusion coefficient in a straightforward way. In addition, the rotational time constant is extracted from the high-frequency relaxation contribution. This is demonstrated for simple and ionic liquids and for polymer melts.

SELECTION OF CITATIONS
SEARCH DETAIL
...