Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338921

ABSTRACT

Bipolar disorder (BD) is a severe and common chronic mental illness characterized by recurrent mood swings between depression and mania. The biological basis of the disease is poorly understood, and its treatment is unsatisfactory. Na+, K+-ATPase is a major plasma membrane transporter and signal transducer. The catalytic α subunit of this enzyme is the binding site for cardiac steroids. Three α isoforms of the Na+, K+-ATPase are present in the brain. Previous studies have supported the involvement of the Na+, K+-ATPase and endogenous cardiac steroids (ECS) in the etiology of BD. Decreased brain ECS has been found to elicit anti-manic and anti-depressive-like behaviors in mice and rats. However, the identity of the specific α isoform involved in these behavioral effects is unknown. Here, we demonstrated that decreasing ECS through intracerebroventricular (i.c.v.) administration of anti-ouabain antibodies (anti-Ou-Ab) decreased the activity of α1+/- mice in forced swimming tests but did not change the activity in wild type (wt) mice. This treatment also affected exploratory and anxiety behaviors in α1+/- but not wt mice, as measured in open field tests. The i.c.v. administration of anti-Ou-Ab decreased brain ECS and increased brain Na+, K+-ATPase activity in wt and α1+/- mice. The serum ECS was lower in α1+/- than wt mice. In addition, a study in human participants demonstrated that serum ECS significantly decreased after treatment. These results suggest that the Na+, K+-ATPase α1 isoform is involved in depressive- and manic-like behaviors and support that the Na+, K+-ATPase/ECS system participates in the etiology of BD.


Subject(s)
Depression , Sodium-Potassium-Exchanging ATPase , Humans , Mice , Rats , Animals , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Ouabain/metabolism , Protein Isoforms/metabolism , Steroids
2.
Int J Mol Sci ; 23(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36430373

ABSTRACT

Bipolar disorder (BD) is a severe and common chronic mental illness. The biological basis of the disease is poorly understood and its treatment is unsatisfactory. Our previous studies supported the notion that alterations in Na+, K+-ATPase activity were involved in the etiology of BD. As various chemical elements inhibit Na+, K+-ATPase, we determined the concentration of 26 elements in the serum of BD patients before and after treatment and in postmortem brain samples from BD patients, and compared them with matched controls. The only element that was reduced significantly in the serum following treatment was vanadium (V). Furthermore, the concentration of V was significantly lower in the pre-frontal cortex of BD patients compared with that of the controls. Intracerebroventricular administration of V in mice elicited anxiolytic and depressive activities, concomitantly inhibited brain Na+, K+-ATPase activity, and increased extracellular signal-regulated kinase phosphorylation. A hypothesis associating V with BD was set forth decades ago but eventually faded out. Our results are in accord with the hypothesis and advocate for a thorough examination of the possible involvement of chemical elements, V in particular, in BD.


Subject(s)
Bipolar Disorder , Animals , Mice , Bipolar Disorder/drug therapy , Vanadium/pharmacology , Brain , Frontal Lobe , Adenosine Triphosphatases
3.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36430840

ABSTRACT

Bipolar Disorder (BD) is a severe recurrent affective mood disorder characterized by a wide range of lifelong mood swings, varying between depressive and manic states. BD affects more than 1% of the world's population irrespective of nationality, ethnic origin, or socioeconomic status and is one of the main causes of disability among young people, leading to cognitive and functional impairment and raised mortality, particularly death by suicide. Trace elements play a vital role in many biochemical and physiological processes. Compelling evidence shows that element toxicity might play a crucial role in the onset and progression of neurodegenerative disorders, but their involvement in mood disorders has been scarcely studied. In the present investigation, we determined the concentration of 26 elements in the serum of BD patients before and after treatment and in postmortem brain samples from BD patients and compared them with matched controls. The only element that was reduced significantly in the serum following treatment was vanadium (V). Furthermore, the concentration of Al, B, Cu, K, Mg and V were significantly lower in the pre-frontal cortex of BD patients compared with those of the controls. A comparison of Spearman's rank correlation coefficients between the elements in the serum and brain of BD patients and control groups pointed to boron and aluminum as being involved in the disease. These results suggest that there is a disturbance in the elements' homeostasis and the inter-elements' relationship in the brain of BD patients and advocate a thorough examination of the possible involvement of chemical elements in different stages of the disease.


Subject(s)
Bipolar Disorder , Humans , Adolescent , Bipolar Disorder/diagnosis , Brain , Mood Disorders , Affect , Personality Disorders
4.
Int J Mol Sci ; 23(7)2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35409366

ABSTRACT

Bufalin and other cardiac steroids (CS) have been used for centuries for the treatment of congestive heart failure, arrhythmias, and other maladies. However, toxicity and the small therapeutic window of this family of steroids limit their use. Therefore, attempts to synthesize a potent, but less toxic, CS are of major importance. In the present study, two novel bufalin derivatives were synthesized and some of their pharmacological properties were characterized. The reaction of bufalin with Ishikawa's reagent resulted in the production of two novel bufalin derivatives: bufalin 2,3-ene and bufalin 3,4-ene. The compounds were purified with TLC and HPLC and their structure was verified with UV, NMR, and MS analyses. The biological activities of these compounds were evaluated by testing their ability to inhibit the Na+, K+-ATPase activity of the brain microsomal fraction to induce cytotoxic activity against the NCI-60 human tumor cell line panel and non-cancer human cells, and to increase the force of contraction of quail embryonic heart muscle cells in culture. The two steroids exhibited biological activities similar to those of other CS in the tested experimental systems, but with reduced cytotoxicity, advocating their development as drugs for the treatment of heart failure and arrhythmias.


Subject(s)
Bufanolides , Ouabain , Arrhythmias, Cardiac/drug therapy , Bufanolides/metabolism , Bufanolides/pharmacology , Humans , Microsomes/metabolism , Ouabain/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism
5.
Int J Mol Sci ; 23(3)2022 Feb 06.
Article in English | MEDLINE | ID: mdl-35163766

ABSTRACT

Bipolar disorder (BD) is a severe psychiatric illness with a poor prognosis and problematic, suboptimal, treatments. Treatments, borne of an understanding of the pathoetiologic mechanisms, need to be developed in order to improve outcomes. Dysregulation of cationic homeostasis is the most reproducible aspect of BD pathophysiology. Correction of ionic balance is the universal mechanism of action of all mood stabilizing medications. Endogenous sodium pump modulators (collectively known as endogenous cardiac steroids, ECS) are steroids which are synthesized in and released from the adrenal gland and brain. These compounds, by activating or inhibiting Na+, K+-ATPase activity and activating intracellular signaling cascades, have numerous effects on cell survival, vascular tone homeostasis, inflammation, and neuronal activity. For the past twenty years we have addressed the hypothesis that the Na+, K+-ATPase-ECS system may be involved in the etiology of BD. This is a focused review that presents a comprehensive model pertaining to the role of ECS in the etiology of BD. We propose that alterations in ECS metabolism in the brain cause numerous biochemical changes that underlie brain dysfunction and mood symptoms. This is based on both animal models and translational human results. There are data that demonstrate that excess ECS induce abnormal mood and activity in animals, while a specific removal of ECS with antibodies normalizes mood. There are also data indicating that circulating levels of ECS are lower in manic individuals, and that patients with BD are unable to upregulate synthesis of ECS under conditions that increase their elaboration in non-psychiatric controls. There is strong evidence for the involvement of ion dysregulation and ECS function in bipolar illness. Additional research is required to fully characterize these abnormalities and define future clinical directions.


Subject(s)
Bipolar Disorder/metabolism , Ion Pumps/metabolism , Steroids/blood , Animals , Bipolar Disorder/psychology , Brain/metabolism , Down-Regulation , Humans , Signal Transduction , Steroids/metabolism
6.
Food Chem Toxicol ; 158: 112657, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34740715

ABSTRACT

Dextromethorphan (DM) abuse produces mania-like symptoms in humans. ERK/Akt signaling activation involved in manic potential can be attenuated by the inhibition of ouabain-like cardiac steroids. In this study, increased phosphorylations of ERK/Akt and hyperlocomotion induced by DM (30 mg/kg, i.p./day × 7) were significantly protected by the ouabain inhibitor rostafuroxin (ROSTA), suggesting that DM induces the manic potential. ROSTA significantly attenuated DM-induced protein kinase C δ (PKCδ) phosphorylation, GluN2B (i.e., MDA receptor subunit) expression, and phospho-PKCδ/GluN2B interaction. DM instantly upregulated the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent system. However, DM reduced Nrf2 nuclear translocation, Nrf2 DNA binding activity, γ-glutamylcysteine mRNA expression, and subsequent GSH/GSSG level and enhanced oxidative parameters following 1-h of administration. ROSTA, PKCδ inhibitor rottlerin, and GluN2B inhibitor traxoprodil significantly attenuated DM-induced alterations in Nrf2-related redox parameters and locomotor activity induced by DM in wild-type mice. Importantly, in PKCδ knockout mice, DM failed to alter the above parameters. Further, ROSTA and traxoprodil also failed to enhance PKCδ depletion effect, suggesting that PKCδ is a critical target for the anti-manic potential of ROSTA or GluN2B antagonism. Our results suggest that ROSTA inhibits DM-induced manic potential by attenuating ERK/Akt activation, GluN2B/PKCδ signalings, and Nrf2-dependent system.


Subject(s)
Androstanols/pharmacology , Bipolar Disorder , Dextromethorphan/adverse effects , Ouabain/antagonists & inhibitors , Animals , Bipolar Disorder/chemically induced , Bipolar Disorder/metabolism , Disease Models, Animal , Locomotion/drug effects , Male , Mice , Signal Transduction/drug effects
7.
Int J Mol Sci ; 21(16)2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32824628

ABSTRACT

Bipolar disorder is a chronic multifactorial psychiatric illness that affects the mood, cognition, and functioning of about 1-2% of the world's population. Its biological basis is unknown, and its treatment is unsatisfactory. The α1, α2, and α3 isoforms of the Na+, K+-ATPase, an essential membrane transporter, are vital for neuronal and glial function. The enzyme and its regulators, endogenous cardiac steroids like ouabain and marinobufagenin, are implicated in neuropsychiatric disorders, bipolar disorder in particular. Here, we address the hypothesis that the α isoforms of the Na+, K+-ATPase and its regulators are altered in the prefrontal cortex of bipolar disease patients. The α isoforms were determined by Western blot and ouabain and marinobufagenin by specific and sensitive immunoassays. We found that the α2 and α3 isoforms were significantly higher and marinobufagenin levels were significantly lower in the prefrontal cortex of the bipolar disease patients compared with those in the control. A positive correlation was found between the levels of the three α isoforms in all samples and between the α1 isoform and ouabain levels in the controls. These results are in accordance with the notion that the Na+, K+-ATPase-endogenous cardiac steroids system is involved in bipolar disease and suggest that it may be used as a target for drug development.


Subject(s)
Bipolar Disorder/metabolism , Bufanolides/metabolism , Ouabain/metabolism , Prefrontal Cortex/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Adult , Bipolar Disorder/pathology , Female , Humans , Male , Middle Aged , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sodium-Potassium-Exchanging ATPase/genetics
8.
Cells ; 9(4)2020 04 18.
Article in English | MEDLINE | ID: mdl-32325693

ABSTRACT

An injury to peripheral nerves leads to skin denervation, which often is followed by increased pain sensitivity of the denervated areas and the development of neuropathic pain. Changes in innervation patterns during the reinnervation process of the denervated skin could contribute to the development of neuropathic pain. Here, we examined the changes in the innervation pattern during reinnervation and correlated them with the symptoms of neuropathic pain. Using a multispectral labeling technique-PainBow, which we developed, we characterized dorsal root ganglion (DRG) neurons innervating distinct areas of the rats' paw. We then used spared nerve injury, causing partial denervation of the paw, and examined the changes in innervation patterns of the denervated areas during the development of allodynia and hyperalgesia. We found that, differently from normal conditions, during the development of neuropathic pain, these areas were mainly innervated by large, non-nociceptive neurons. Moreover, we found that the development of neuropathic pain is correlated with an overall decrease in the number of DRG neurons innervating these areas. Importantly, treatment with ouabain facilitated reinnervation and alleviated neuropathic pain. Our results suggest that local changes in peripheral innervation following denervation contribute to neuropathic pain development. The reversal of these changes decreases neuropathic pain.


Subject(s)
Ganglia, Spinal/injuries , Hyperalgesia/physiopathology , Neuralgia/physiopathology , Skin/pathology , Animals , Behavior, Animal/physiology , Ganglia, Spinal/physiopathology , Hyperalgesia/complications , Male , Neuralgia/etiology , Neurogenesis/physiology , Neurons/pathology , Neurons/physiology , Rats, Sprague-Dawley , Skin/innervation
9.
PLoS One ; 14(6): e0218041, 2019.
Article in English | MEDLINE | ID: mdl-31173612

ABSTRACT

There is strong evidence that neuronal hyper-excitability underlies migraine, and may or may not be preceded by cortical spreading depression. However, the mechanisms for cortical spreading depression and/or migraine are not established. Previous studies reported that cerebrospinal fluid (CSF) [Na+] is higher during migraine, and that higher extracellular [Na+] leads to hyper-excitability. We raise the hypothesis that altered choroid plexus Na+, K+-ATPase activity can cause both migraine phenomena: inhibition raises CSF [K+] and initiates cortical spreading depression, while activation raises CSF [Na+] and causes migraine. In this study, we examined levels of specific Na+, K+-ATPase inhibitors, endogenous ouabain-like compounds (EOLC), in CSF from migraineurs and controls. CSF EOLC levels were significantly lower during ictal migraine (0.4 nM +/- 0.09) than from either controls (1.8 nM +/- 0.4) or interictal migraineurs (3.1 nM +/- 1.9). Blood plasma EOLC levels were higher in migraineurs than controls, but did not differ between ictal and interictal states. In a Sprague-Dawley rat model of nitroglycerin-triggered central sensitization, we changed the concentrations of EOLC and CSF sodium, and measured aversive mechanical threshold (von Frey hairs), trigeminal nucleus caudalis activation (cFos), and CSF [Na+] (ultra-high field 23Na MRI). Animals were sensitized by three independent treatments: intraperitoneal nitroglycerin, immunodepleting EOLC from cerebral ventricles, or cerebroventricular infusion of higher CSF [Na+]. Conversely, nitroglycerin-triggered sensitization was prevented by either vascular or cerebroventricular delivery of the specific Na+, K+-ATPase inhibitor, ouabain. These results affirm our hypothesis that higher CSF [Na+] is linked to human migraine and to a rodent migraine model, and demonstrate that EOLC regulates them both. Our data suggest that altered choroid plexus Na+, K+-ATPase activity is a common source of these changes, and may be the initiating mechanism in migraine.


Subject(s)
Cerebrospinal Fluid/metabolism , Ions/metabolism , Migraine Disorders/etiology , Migraine Disorders/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium/metabolism , Adolescent , Adult , Aged , Animals , Choroid Plexus/metabolism , Female , Humans , Male , Middle Aged , Ouabain/metabolism , Rats , Rats, Sprague-Dawley , Young Adult
10.
J Psychiatr Res ; 115: 21-28, 2019 08.
Article in English | MEDLINE | ID: mdl-31082653

ABSTRACT

Na+, K+-ATPase is an essential membrane transporter. In the brain, the α3 isoform of Na+, K+-ATPase is vital for neuronal function. The enzyme and its regulators, endogenous cardiac steroids (ECS), were implicated in neuropsychiatric disorders. GABAergic neurotransmission was also studied extensively in diseases such as schizophrenia and bipolar disorder (BD). Post mortem brain samples from subjects with depression, schizophrenia or BD and non-psychiatric controls were provided by the Stanley Medical Research Institute. ECS levels were determined by ELISA. Expression levels of the three Na+, K+-ATPase-α isoforms, α1, α2 and α3, were determined by Western blot analysis. The α3 levels in GABAergic neurons in different regions of the brain were quantified by fluorescence immunohistochemistry. The results show that Na+, K+ -ATPase α3 isoform levels were lower in GABAergic neurons in the frontal cortex in BD and schizophrenia as compared with the controls (n = 15 subjects per group). A study on a 'mini-cohort' (n = 3 subjects per group) showed that the α3 isoform levels were also lower in GABAergic neurons in the hippocampus, but not amygdala, of bipolar and schizophrenic subjects. In the temporal cortex, higher Na+, K+ -ATPase α3 protein levels were found in the three psychiatric groups. No significant differences in ECS levels were found in this brain area. This is the first report on the distribution of α3 in specific neurons in the human brain in association with mental illness. These results strengthen the hypothesis for the involvement of Na+, K+ -ATPase in neuropsychiatric diseases.


Subject(s)
Bipolar Disorder/enzymology , Depressive Disorder/enzymology , GABAergic Neurons/enzymology , Interneurons/enzymology , Prefrontal Cortex/enzymology , Schizophrenia/enzymology , Sodium-Potassium-Exchanging ATPase/metabolism , Tissue Banks , Adult , Amygdala/enzymology , Hippocampus/enzymology , Humans , Prefrontal Cortex/pathology , Protein Isoforms , Temporal Lobe/enzymology
11.
J Cardiovasc Pharmacol Ther ; 24(1): 78-89, 2019 01.
Article in English | MEDLINE | ID: mdl-30033751

ABSTRACT

Cardiac steroids (CSs), such as ouabain and digoxin, increase the force of contraction of heart muscle and are used for the treatment of congestive heart failure (CHF). However, their small therapeutic window limits their use. It is well established that Na+, K+-ATPase inhibition mediates CS-induced increase in heart contractility. Recently, the involvement of intracellular signal transduction was implicated in this effect. The aim of the present study was to test the hypothesis that combined treatment with ouabain and Akt inhibitor (MK-2206) augments ouabain-induced inotropy in mammalian models. We demonstrate that the combined treatment led to an ouabain-induced increase in contractility at concentrations at which ouabain alone was ineffective. This was shown in 3 experimental systems: neonatal primary rat cardiomyocytes, a Langendorff preparation, and an in vivo myocardial infarction induced by left anterior descending coronary artery (LAD) ligation. Furthermore, cell viability experiments revealed that this treatment protected primary cardiomyocytes from MK-2206 toxicity and in vivo reduced the size of scar tissue 10 days post-LAD ligation. We propose that Akt activity imposes a constant inhibitory force on muscle contraction, which is attenuated by low concentrations of MK-2206, resulting in potentiation of the ouabain effect. This demonstration of the increase in the CS effect advocates the development of the combined treatment in CHF.


Subject(s)
Cardiotonic Agents/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Myocardial Contraction/drug effects , Myocardial Infarction/drug therapy , Myocytes, Cardiac/drug effects , Ouabain/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Ventricular Function, Left/drug effects , Animals , Cells, Cultured , Disease Models, Animal , Drug Synergism , Drug Therapy, Combination , Isolated Heart Preparation , Male , Myocardial Infarction/enzymology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , Signal Transduction
12.
Int J Mol Sci ; 19(8)2018 Aug 07.
Article in English | MEDLINE | ID: mdl-30087257

ABSTRACT

Bipolar disorder (BD) is a severe and common chronic mental illness characterized by recurrent mood swings between depression and mania. The biological basis of the disease is poorly understood and its treatment is unsatisfactory. Although in past decades the "monoamine hypothesis" has dominated our understanding of both the pathophysiology of depressive disorders and the action of pharmacological treatments, recent studies focus on the involvement of additional neurotransmitters/neuromodulators systems and cellular processes in BD. Here, evidence for the participation of Na⁺, K⁺-ATPase and its endogenous regulators, the endogenous cardiac steroids (ECS), in the etiology of BD is reviewed. Proof for the involvement of brain Na⁺, K⁺-ATPase and ECS in behavior is summarized and it is hypothesized that ECS-Na⁺, K⁺-ATPase-induced activation of intracellular signaling participates in the mechanisms underlying BD. We propose that the activation of ERK, AKT, and NFκB, resulting from ECS-Na⁺, K⁺-ATPase interaction, modifies neuronal activity and neurotransmission which, in turn, participate in the regulation of behavior and BD. These observations suggest Na⁺, K⁺-ATPase-mediated signaling is a potential target for drug development for the treatment of BD.


Subject(s)
Bipolar Disorder/metabolism , Signal Transduction , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Bipolar Disorder/etiology , Bipolar Disorder/pathology , Humans , MAP Kinase Signaling System , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Steroids/metabolism
13.
Brain Res Bull ; 137: 356-362, 2018 03.
Article in English | MEDLINE | ID: mdl-29374602

ABSTRACT

OBJECTIVES: Bipolar disorder (BD) is a severe mental illness characterized by episodes of mania and depression. Numerous studies have implicated the involvement of endogenous cardiac steroids (CS), and their receptor, Na+, K+ -ATPase, in BD. The aim of the present study was to examine the role of brain oxidative stress in the CS-induced behavioral effects in mice. METHODS: Amphetamine (AMPH)-induced hyperactivity, assessed in the open-field test, served as a model for manic-like behavior in mice. A reduction in brain CS was obtained by specific and sensitive anti-ouabain antibodies. The level of oxidative stress was tested in the hippocampus and frontal cortex by measuring the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the levels of antioxidant non-protein thiols (NPSH) and oxidative damage biomarkers thiobarbituric acid reactive substances (TBARS) and protein carbonyl (PC). RESULTS: AMPH administration resulted in a marked hyperactivity and increased oxidative stress, as manifested by increased SOD activity, decreased activities of CAT and GPx, reduced levels of NPSH and increased levels of TBARS and PC. The administration of anti-ouabain antibodies, which reduced the AMPH-induced hyperactivity, protected against the concomitant oxidative stress in the brain. CONCLUSIONS: Our results demonstrate that oxidative stress participates in the effects of endogenous CS on manic-like behavior induced by AMPH. These finding support the notion that CS and oxidative stress may be associated with the pathophysiology of mania and BD.


Subject(s)
Amphetamine/toxicity , Bipolar Disorder/chemically induced , Brain/drug effects , Central Nervous System Stimulants/toxicity , Neuroprotective Agents/pharmacology , Ouabain/antagonists & inhibitors , Amphetamine-Related Disorders/drug therapy , Amphetamine-Related Disorders/metabolism , Animals , Antibodies/administration & dosage , Antioxidants/pharmacology , Bipolar Disorder/metabolism , Brain/metabolism , Disease Models, Animal , Male , Mice, Inbred BALB C , Motor Activity/drug effects , Motor Activity/physiology , Ouabain/immunology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Random Allocation
14.
Bipolar Disord ; 18(5): 451-9, 2016 08.
Article in English | MEDLINE | ID: mdl-27393337

ABSTRACT

OBJECTIVES: Bipolar disorder (BD) is a complex psychiatric disorder characterized by mania and depression. Alterations in brain Na(+) , K(+) -ATPase and cardiac steroids (CSs) have been detected in BD, raising the hypothesis of their involvement in this pathology. The present study investigated the behavioral and biochemical consequences of a reduction in endogenous brain CS activity in animal models of mania. METHODS: Amphetamine (AMPH)-induced hyperactivity in BALB/c and black Swiss mice served as a model of mania. Behavior was evaluated in the open-field test in naïve mice or in mice treated with anti-ouabain antibodies. CS levels were determined by enzyme-linked immunosorbent assay (ELISA), using sensitive and specific anti-ouabain antibodies. Extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) phosphorylation levels in the frontal cortex were determined by western blot analysis. RESULTS: Administration of AMPH to BALB/c and black Swiss mice resulted in a marked increase in locomotor activity, accompanied by a threefold increase in brain CSs. The lowering of brain CSs by the administration of anti-ouabain antibodies prevented the hyperactivity and the increase in brain CS levels. AMPH caused an increase in phosphorylated ERK (p-ERK) and phosphorylated Akt (p-Akt) levels in the frontal cortex, which was significantly reduced by administration of the antibodies. A synthetic 'functional antagonist' of CSs, 4-(3'α-15'ß-dihydroxy-5'ß-estran-17'ß-yl) furan-2-methyl alcohol, also resulted in attenuation of AMPH-induced hyperactivity. CONCLUSIONS: These results are in accordance with the notion that malfunctioning of the Na(+) , K(+) -ATPase/CS system may be involved in the manifestation of mania and identify this system as a potential new target for drug development.


Subject(s)
Behavior, Animal , Bipolar Disorder/metabolism , Frontal Lobe , Ouabain/immunology , Animals , Antibodies/pharmacology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Bipolar Disorder/therapy , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay/methods , Frontal Lobe/enzymology , Frontal Lobe/metabolism , Mice , Phosphorylation/physiology
15.
J Pharmacol Exp Ther ; 357(2): 345-56, 2016 May.
Article in English | MEDLINE | ID: mdl-26941172

ABSTRACT

Interaction of cardiac steroids (CS) with the Na(+), K(+)-ATPase elicits, in addition to inhibition of the enzyme's activity, the activation of intracellular signaling such as extracellular signal-regulated (ERK) and protein kinase B (Akt). We hypothesized that the activities of these pathways are involved in CS-induced increase in heart contractility. This hypothesis was tested using in vivo and ex vivo wild type (WT) and sarcoplasmic reticulum Ca(2+) atpase1a-deficient zebrafish (accordion, acc mutant) experimental model. Heart contractility was measured in vivo and in primary cardiomyocytes in WT zebrafish larvae and acc mutant. Ca(2+) transients were determined ex vivo in adult zebrafish hearts. CS dose dependently augmented the force of contraction of larvae heart muscle and cardiomyocytes and increased Ca(2+) transients in WT but not in acc mutant. CS in vivo increased the phosphorylation rate of ERK and Akt in the adult zebrafish heart of the two strains. Pretreatment of WT zebrafish larvae or cardiomyocytes with specific MAPK inhibitors completely abolished the CS-induced increase in contractility. On the contrary, pretreatment with Akt inhibitor significantly enhanced the CS-induced increase in heart contractility both in vivo and ex vivo without affecting CS-induced Ca(2+) transients. Furthermore, pretreatment of the acc mutant larvae or cardiomyocytes with Akt inhibitor restored the CS-induced increase in heart contractility also without affecting Ca(2+) transients. These results support the notion that the activity of MAPK pathway is obligatory for CS-induced increases in heart muscle contractility. Akt activity, on the other hand, plays a negative role, via Ca(2+) independent mechanisms, in CS action. These findings point to novel potential pharmacological intervention to increase CS efficacy.


Subject(s)
Cardiotonic Agents/pharmacology , MAP Kinase Signaling System/drug effects , Myocardial Contraction/drug effects , Oncogene Protein v-akt/drug effects , Signal Transduction/drug effects , Steroids/pharmacology , Animals , Calcium Signaling/drug effects , Larva , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mutation , Myocytes, Cardiac/drug effects , Oncogene Protein v-akt/antagonists & inhibitors , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/deficiency , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
16.
Int J Cardiol ; 209: 296-306, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26913371

ABSTRACT

BACKGROUND: The developmental origin of the c-kit expressing progenitor cell pool in the adult heart has remained elusive. Recently, it has been discovered that the injured heart is enriched with c-kit(+) cells, which also express the hematopoietic marker CD45. METHODS AND RESULTS: In this study, we characterize the phenotype and transcriptome of the c-kit+/CD45+/CD11b+/Flk-1+/Sca-1±(B-type) cell population, originating from the left atrial appendage. These cells are defined as cardiac macrophage progenitors. We also demonstrate that the CD45+ progenitor cell population activates heart development, neural crest and pluripotency-associated pathways in vitro, in conjunction with CD45 down-regulation, and acquire a c-kit+/CD45-/CD11b-/Flk-1-/Sca-1+ (A-type) phenotype through cell fusion and asymmetric division. This putative spontaneous reprogramming evolves into a highly proliferative, partially myogenic phenotype (C-type). CONCLUSIONS: Our data suggests that A-type cells and cardiac macrophage precursor cells (B-type) have a common lineage origin, possibly resolving some current conundrums in the field of cardiac regeneration.


Subject(s)
Atrial Appendage/physiology , Hematopoietic Stem Cells/physiology , Leukocyte Common Antigens/physiology , Macrophages/physiology , Phenotype , Proto-Oncogene Proteins c-kit/physiology , Animals , Atrial Appendage/cytology , Cells, Cultured , Cellular Reprogramming Techniques/methods , Mice , Mice, Inbred C57BL , Mice, Transgenic
17.
J Am Soc Nephrol ; 26(5): 1103-14, 2015 May.
Article in English | MEDLINE | ID: mdl-25294233

ABSTRACT

Ouabain, a steroid present in the circulation and in various tissues, was shown to affect the growth and viability of various cells in culture. To test for the possible influence of this steroid on growth and viability in vivo, we investigated the involvement of maternal circulating ouabain in the regulation of fetal growth and organ development. We show that intraperitoneal administration of anti-ouabain antibodies to pregnant mice resulted in a >80% decline in the circulating ouabain level. This reduction caused a significant decrease in offspring body weight, accompanied by enlargement of the offspring heart and inhibition of kidney and liver growth. Kidney growth inhibition was manifested by a decrease in the size and number of nephrons. After the reduction in maternal circulating ouabain, kidney expression of cyclin D1 was reduced and the expression of the α1 isoform of the Na(+), K(+)-ATPase was increased. In addition, the elevation of proliferation signals including ERK1/2, p-90RSK, Akt, PCNA, and Ki-67, and a reduction in apoptotic factors such as Bax, caspase-3, and TUNEL were detected. During human pregnancy, the circulating maternal ouabain level increased and the highest concentration of the steroid was found in the placenta. Furthermore, circulating ouabain levels in women with small-for-gestational age neonates were significantly lower than the levels in women with normal-for-gestational age newborns. These results support the notion that ouabain is a growth factor and suggest that a reduction in the concentration of this hormone during pregnancy may increase the risk of impaired growth and kidney development.


Subject(s)
Kidney/embryology , Ouabain/blood , Animals , Body Weight , Cell Proliferation , Cell Survival , Female , Humans , Infant, Newborn , Infant, Small for Gestational Age , Kidney/growth & development , Kidney/metabolism , Mice, Inbred ICR , Organ Size , Pregnancy
18.
Article in English | MEDLINE | ID: mdl-25506340

ABSTRACT

Natriuretic hormones (NH) include three groups of compounds: the natriuretic peptides (ANP, BNP and CNP), the gastrointestinal peptides (guanylin and uroguanylin), and endogenous cardiac steroids. These substances induce the kidney to excrete sodium and therefore participate in the regulation of sodium and water homeostasis, blood volume, and blood pressure (BP). In addition to their peripheral functions, these hormones act as neurotransmitters or neuromodulators in the brain. In this review, the established information on the biosynthesis, release and function of NH is discussed, with particular focus on their role in brain function. The available literature on the expression patterns of each of the NH and their receptors in the brain is summarized, followed by the evidence for their roles in modulating brain function. Although numerous open questions exist regarding this issue, the available data support the notion that NH participate in the central regulation of BP, neuroprotection, satiety, and various psychiatric conditions, including anxiety, addiction, and depressive disorders. In addition, the interactions between the different NH in the periphery and the brain are discussed.

19.
J Neurotrauma ; 31(23): 1942-7, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25007121

ABSTRACT

The cardiac steroid ouabain binds to Na(+), K(+)-ATPase and inhibits its activity. Administration of the compound to animals and humans causes an increase in the force of contraction of heart muscle and stabilizes heart rate. In addition, this steroid promotes the growth of cardiac, vascular, and neuronal cells both in vitro and in vivo. We studied the effects of ouabain on mouse recovery following closed head injury (CHI), a model for traumatic brain injury. We show that chronic (three times a week), but not acute, intraperitoneal administration of a low dose (1 µg/kg) of ouabain significantly improves mouse recovery and functional outcome. The improvement in mouse performance was accompanied by a decrease in lesion size, estimated 43 d following the trauma. In addition, mice that underwent CHI and were treated with ouabain showed an increase in the number of proliferating cells in the subventricular zone and in the area surrounding the site of injury. Determination of the identity of the proliferating cells in the area surrounding the trauma showed that whereas there was no change in the proliferation of endothelial cells or astrocytes, neuronal cell proliferation almost doubled in the ouabain-treated mice in comparison with that of the vehicle animals. These results point to a neuroprotective effects of low doses of ouabain and imply its involvement in brain recovery and neuronal regeneration. This suggests that ouabain and maybe other cardiac steroids may be used for the treatment of traumatic brain injury.


Subject(s)
Brain Injuries/drug therapy , Neuroprotective Agents/therapeutic use , Ouabain/therapeutic use , Recovery of Function/drug effects , Animals , Behavior, Animal/drug effects , Cell Proliferation/drug effects , Male , Mice , Neuroprotective Agents/pharmacology , Ouabain/pharmacology
20.
Can J Physiol Pharmacol ; 90(10): 1386-93, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22966876

ABSTRACT

Natriuretic peptides and digitalis-like compounds serve as regulators of homeostasis, including control of volume expansion and blood pressure. The aim of the present study was to explore possible interactions between atrial natriuretic peptide (ANP) and ouabain in the heart. ANP (1 nmol/L) had no effect in papillary muscle preparations from guinea pigs. Ouabain (1 µmol/L) induced positive inotropic effect. The addition of ANP prior to ouabain resulted in a significant decrease in the ouabain-induced positive inotropic effect, manifested as an attenuated increase in twitch maximal upward force slope and resting muscular tension. In addition, ANP caused an increase in Na⁺-K⁺-ATPase activity in heart microsomal preparations. The effect of ouabain on Na⁺-K⁺-ATPase activity was shown in a biphasic manner. Ouabain (0.01-1 nmol/L) had a small but significant increase on pump activity, but higher doses of ouabain inhibited activity. ANP attenuated ouabain-induced Na⁺-K⁺-ATPase activity. Furthermore, ouabain (50 nmol/L) or ANP (10 nmol/L) alone induced Akt activation in cardiomyocytes. However, ANP blocked ouabain-induced Akt activation. These results point to the existence of interactions between ANP and ouabain on Na⁺-K⁺-ATPase signaling and function in the heart, which may be mediated by regulation of Na⁺-K⁺-ATPase activity and (or) signal transduction mechanisms.


Subject(s)
Atrial Natriuretic Factor/metabolism , Cardiotonic Agents/pharmacology , Myocardial Contraction/drug effects , Ouabain/pharmacology , Papillary Muscles/drug effects , Animals , Cardiotonic Agents/antagonists & inhibitors , Cells, Cultured , Guinea Pigs , In Vitro Techniques , Male , Mice , Mice, Transgenic , Microsomes/drug effects , Microsomes/enzymology , Microsomes/metabolism , Muscle Tonus/drug effects , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Ouabain/antagonists & inhibitors , Papillary Muscles/enzymology , Papillary Muscles/metabolism , Proto-Oncogene Proteins c-akt/agonists , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...