Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(10): 4704-4715, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38326946

ABSTRACT

Ozone reaction with human surfaces is an important source of ultrafine particles indoors. However, 1-20 nm particles generated from ozone-human chemistry, which mark the first step of particle formation and growth, remain understudied. Ventilation and indoor air movement could have important implications for these processes. Therefore, in a controlled-climate chamber, we measured ultrafine particles initiated from ozone-human chemistry and their dependence on the air change rate (ACR, 0.5, 1.5, and 3 h-1) and operation of mixing fans (on and off). Concurrently, we measured volatile organic compounds (VOCs) and explored the correlation between particles and gas-phase products. At 25-30 ppb ozone levels, humans generated 0.2-7.7 × 1012 of 1-3 nm, 0-7.2 × 1012 of 3-10 nm, and 0-1.3 × 1012 of 10-20 nm particles per person per hour depending on the ACR and mixing fan operation. Size-dependent particle growth and formation rates increased with higher ACR. The operation of mixing fans suppressed the particle formation and growth, owing to enhanced surface deposition of the newly formed particles and their precursors. Correlation analyses revealed complex interactions between the particles and VOCs initiated by ozone-human chemistry. The results imply that ventilation and indoor air movement may have a more significant influence on particle dynamics and fate relative to indoor chemistry.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Ozone , Volatile Organic Compounds , Humans , Particle Size , Ozone/analysis , Ventilation/methods , Particulate Matter/analysis , Volatile Organic Compounds/analysis , Air Pollution, Indoor/analysis , Air Pollutants/analysis
2.
Environ Sci Technol ; 58(4): 1986-1997, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38237915

ABSTRACT

Humans are the primary sources of CO2 and NH3 indoors. Their emission rates may be influenced by human physiological and psychological status. This study investigated the impact of physiological and psychological engagements on the human emissions of CO2 and NH3. In a climate chamber, we measured CO2 and NH3 emissions from participants performing physical activities (walking and running at metabolic rates of 2.5 and 5 met, respectively) and psychological stimuli (meditation and cognitive tasks). Participants' physiological responses were recorded, including the skin temperature, electrodermal activity (EDA), and heart rate, and then analyzed for their relationship with CO2 and NH3 emissions. The results showed that physiological engagement considerably elevated per-person CO2 emission rates from 19.6 (seated) to 46.9 (2.5 met) and 115.4 L/h (5 met) and NH3 emission rates from 2.7 to 5.1 and 8.3 mg/h, respectively. CO2 emissions reduced when participants stopped running, whereas NH3 emissions continued to increase owing to their distinct emission mechanisms. Psychological engagement did not significantly alter participants' emissions of CO2 and NH3. Regression analysis revealed that CO2 emissions were predominantly correlated with heart rate, whereas NH3 emissions were mainly associated with skin temperature and EDA. These findings contribute to a deeper understanding of human metabolic emissions of CO2 and NH3.


Subject(s)
Ammonia , Carbon Dioxide , Humans
3.
Environ Res ; 231(Pt 2): 116197, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37224948

ABSTRACT

People are exposed to myriad of airborne pollutants in their homes. Owing to diverse potential sources of air pollution and human activity patterns, accurate assessment of residential exposures is complex. In this study, we explored the relationship between personal and stationary air pollutant measurements in residences of 37 participants working from home during the heating season. Stationary environmental monitors (SEMs) were located in the bedroom, living room or home office and personal exposure monitors (PEMs) were worn by the participants. SEMs and PEMs included both real-time sensors and passive samplers. During three consecutive weekdays, continuous data were obtained for particle number concentration (size range 0.3-10 µm), carbon dioxide (CO2), and total volatile organic compounds (TVOC), while passive samplers collected integrated measures of 36 volatile organic compounds (VOCs) and semi volatile organic compounds (SVOCs). The personal cloud effect was detected in >80% of the participants for CO2 and >50% participants for PM10. Multiple linear regression analysis showed that a single CO2 monitor placed in the bedroom efficiently represented personal exposure to CO2 (R2 = 0.90) and moderately so for PM10 (R2 = 0.55). Adding a second or third sensor in a residence did not lead to improved exposure estimates for CO2, with only 6-9% improvement for particles. Selecting data from SEMs when participants were in the same room improved personal exposure estimates by 33% for CO2 and 5% for particles. Out of 36 detected VOCs and SVOCs, 13 had at least 50% higher concentrations in personal versus stationary samples. Findings from this study aid improved understanding of the complex dynamics of gaseous and particle pollutants and their sources in residences, and could support the development of refined procedures for residential air quality monitoring and inhalation exposure assessment.


Subject(s)
Air Pollutants , Air Pollution , Volatile Organic Compounds , Humans , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Gases , Carbon Dioxide/analysis , Air Pollution/analysis
4.
Build Environ ; 236: 110280, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37064616

ABSTRACT

Personal cloud, termed as the difference in air pollutant concentrations between breathing zone and room sites, represents the bias in approximating personal inhalation exposure that is linked to accuracy of health risk assessment. This study performed a two-week field experiment in a naturally ventilated office during the COVID-19 pandemic to assess occupants' exposure to common air pollutants and to determine factors contributing to the personal cloud effect. During occupied periods, indoor average concentrations of endotoxin (0.09 EU/m3), TVOC (231 µg/m3), CO2 (630 ppm), and PM10 (14 µg/m3) were below the recommended limits, except for formaldehyde (58 µg/m3). Personal exposure concentrations, however, were significantly different from, and mostly higher than, concentrations measured at room stationary sampling sites. Although three participants shared the same office, their personal air pollution clouds were mutually distinct. The mean personal cloud magnitude ranged within 0-0.05 EU/m3, 35-192 µg/m3, 32-120 ppm, and 4-9 µg/m3 for endotoxin, TVOC, CO2, and PM10, respectively, and was independent from room concentrations. The use of hand sanitizer was strongly associated with an elevated personal cloud of endotoxin and alcohol-based VOCs. Reduced occupancy density in the office resulted in more pronounced personal CO2 clouds. The representativeness of room stationary sampling for capturing dynamic personal exposures was as low as 28% and 5% for CO2 and PM10, respectively. The findings of our study highlight the necessity of considering the personal cloud effect when assessing personal exposure in offices.

5.
J Expo Sci Environ Epidemiol ; 33(3): 396-406, 2023 05.
Article in English | MEDLINE | ID: mdl-36347935

ABSTRACT

BACKGROUND: Modern health concerns related to air pollutant exposure in buildings have been exacerbated owing to several factors. Methods for assessing inhalation exposures indoors have been restricted to stationary air pollution measurements, typically assuming steady-state conditions. OBJECTIVE: We aimed to examine the feasibility of several proxy methods for estimating inhalation exposure to CO2, PM2.5, and PM10 in simulated office environments. METHODS: In a controlled climate chamber mimicking four different office setups, human participants performed a set of scripted sitting and standing office activities. Three proxy sensing techniques were examined: stationary indoor air quality (IAQ) monitoring, individual monitoring of physiological status by wearable wristband, human presence detection by Passive Infrared (PIR) sensors. A ground-truth of occupancy was obtained from video recordings of network cameras. The results were compared with the concurrent IAQ measurements in the breathing zone of a reference participant by means of multiple linear regression (MLR) analysis with a combination of different input parameters. RESULTS: Segregating data onto sitting and standing activities could lead to improved accuracy of exposure estimation model for CO2 and PM by 9-60% during sitting activities, relative to combined activities. Stationary PM2.5 and PM10 monitors positioned at the ceiling-mounted ventilation exhaust in vicinity of the seated reference participant accurately estimated inhalation exposure (adjusted R² = 0.91 and R² = 0.87). Measurement at the front edge of the desk near abdomen showed a moderate accuracy (adjusted R² = 0.58) in estimating exposure to CO2. Combining different sensing techniques improved the CO2 exposure detection by twofold, whereas the improvement for PM exposure detection was small (~10%). SIGNIFICANCE: This study contributes to broadening the knowledge of proxy methods for personal exposure estimation under dynamic occupancy profiles. The study recommendations on optimal monitor combination and placement could help stakeholders better understand spatial air pollutant gradients indoors which can ultimately improve control of IAQ.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Humans , Inhalation Exposure/analysis , Particulate Matter/analysis , Carbon Dioxide/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Air Pollution, Indoor/analysis
7.
Indoor Air ; 32(2): e12993, 2022 02.
Article in English | MEDLINE | ID: mdl-35225383

ABSTRACT

Elevated exposure to indoor air pollution is associated with negative human health and well-being outcomes. Inhalation exposure studies commonly rely on stationary monitors in combination with human time-activity patterns; however, this method is susceptible to exposure misclassification. We tracked ten participants during five consecutive workdays with stationary air pollutant monitors at their homes and offices, and wearable personal monitors. Real-time measures of size-resolved particulate matter (within range 0.3-10 µm) and CO2 , and integrated samples of PM10 , VOCs, and aldehydes were collected. The PM10  cloud magnitude (excess of PM10 beyond stationary room concentration) was detected for all participants in homes and offices. The PM10  cloud magnitude ranged within 5-37 µg/m3 and was the most discernible in the coarse particle size fraction. Particles associated with "Urban mix," "Traffic," and "Human activities" sources contributed the most to PM10 exposures. The personal CO2  clouds were detected for participants with the SEMs in their living rooms and private or low-occupancy offices. The stationary monitors placed in bedrooms were better predictors of personal PM10 and CO2 exposures. An overall of 33 VOCs and aldehydes were detected in both microenvironments, with the majority exhibiting high correlation between personal and stationary stations.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution, Indoor/analysis , Environmental Exposure/analysis , Environmental Monitoring/methods , Humans , Particle Size , Particulate Matter/analysis
8.
Environ Sci Technol ; 55(21): 14536-14545, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34672572

ABSTRACT

Nanocluster aerosols (NCAs, particles <3 nm) are important players in driving climate feedbacks and processes that impact human health. This study reports, for the first time, NCA formation when gas-phase ozone reacts with human surfaces. In an occupied climate-controlled chamber, we detected NCA only when ozone was present. NCA emissions were dependent on clothing coverage, occupant age, air temperature, and humidity. Ozone-initiated chemistry with human skin lipids (particularly their primary surface reaction products) is the key mechanism driving NCA emissions, as evidenced by positive correlations with squalene in human skin wipe samples and known gaseous products from ozonolysis of skin lipids. Oxidation by OH radicals, autoxidation reactions, and human-emitted NH3 may also play a role in NCA formation. Such chemical processes are anticipated to generate aerosols of the smallest size (1.18-1.55 nm), whereas larger clusters result from subsequent growth of the smaller aerosols. This study shows that whenever we encounter ozone indoors, where we spend most of our lives, NCAs will be produced in the air around us.


Subject(s)
Air Pollution, Indoor , Ozone , Aerosols , Air Pollution, Indoor/analysis , Humans , Humidity , Ozone/analysis , Temperature
9.
Indoor Air ; 31(5): 1377-1390, 2021 09.
Article in English | MEDLINE | ID: mdl-33896029

ABSTRACT

Particle release from human skin and clothing has been identified as an important contributor to particulate matter burden indoors. However, knowledge about modeling the coarse particle release from skin and clothing is limited. This study developed a new empirically validated CFD modeling methodology for particle release and transport from seated occupants in an office setting. We tested three modeling approaches for particle emissions: Uniform; Uniform + Localized; and Uniform + Localized with Body Motion; applied to four office scenarios involving a single occupant and two occupants facing each other at 1- and 2-m distances. Uniform particle emissions from skin and clothing underpredicted personal inhalation exposure by as much as 55%-80%. Combining uniform with localized emissions from the armpits drastically reduced the error margin to <10%. However, this modeling approach heavily underestimated particle mass exchange (cross-contamination) between the occupants. Accounting for the occupant's body motion-by applying the momentum theory method-yielded the most accurate personal exposure and cross-contamination results, with errors below 12%. The study suggests that for accurate modeling of particle release and transport from seated occupants indoors, localized body emissions in combination with simplified bodily movements need to be taken into account.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/statistics & numerical data , Clothing , Particulate Matter , Skin , Aerosols , Environmental Monitoring , Humans , Inhalation Exposure , Particle Size
10.
Environ Sci Technol ; 55(1): 509-518, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33337850

ABSTRACT

Human emissions of fluorescent aerosol particles (FAPs) can influence the biological burden of indoor air. Yet, quantification of FAP emissions from human beings remains limited, along with a poor understanding of the underlying emission mechanisms. To reduce the knowledge gap, we characterized human emissions of size-segregated FAPs (1-10 µm) and total particles in a climate chamber with low-background particle levels. We probed the influence of several personal factors (clothing coverage and age) and environmental parameters (level of ozone, air temperature, and relative humidity) on particle emissions from human volunteers. A material-balance model showed that the mean emission rate ranged 5.3-16 × 106 fluorescent particles per person-h (0.30-1.2 mg per person-h), with a dominant size mode within 3-5 µm. Volunteers wearing long-sleeve shirts and pants produced 40% more FAPs relative to those wearing t-shirts and shorts. Particle emissions varied across the age groups: seniors (average age 70.5 years) generated 50% fewer FAPs compared to young adults (25.0 years) and teenagers (13.8 years). While we did not observe a measurable influence of ozone (0 vs 40 ppb) on human FAP emissions, there was a strong influence of relative humidity (34 vs 62%), with FAP emissions decreasing by 30-60% at higher humidity.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Ozone , Adolescent , Aerosols/analysis , Aged , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Humans , Particle Size , Young Adult
11.
Article in English | MEDLINE | ID: mdl-32650626

ABSTRACT

The presence of growing fungi in the indoor environment has been associated with the development of respiratory problems such as asthma or allergic rhinitis, as well as the worsening of respiratory pathologies. Their proliferation indoors could be a result of water leakage or inadequate ventilation. Although the factors promoting mould growth have been widely investigated in traditional dwellings, little work has been done in energy efficient dwellings. Here, the effectiveness of ventilation type, i.e., natural or mechanical, in influencing mould development was estimated in 44 recent and 105 retrofitted energy efficient dwellings. Fungi growing on surfaces were investigated in the dwellings situated in rural, peri-urban, and urban regions of Switzerland. The presence of these fungi was also investigated in bedroom settled dust. Information on building characteristics and owners' lifestyle were collected. Significant associations were found with the level of urbanisation, the location of mouldy area in dwellings, and the diversity of fungal taxa. Dwellings in peri-urban zones showed the most frequent fungal contamination in the owners' bedroom and the highest diversity of fungal genera among dwellings. While the urbanisation level or the ventilation type favoured no specific genus, we found marked disparities in the diversity of fungi growing on surfaces in naturally ventilated versus mechanically ventilated dwellings. Aspergillus, in particular, was a frequent surface contaminant in bedrooms with natural ventilation, but not in those mechanically ventilated. We observed a strong association between fungal growth on surfaces and the number of fungal particles counted in the settled dust of owners' bedrooms. These results demonstrate the importance of ventilation systems in energy efficient dwellings in controlling fungal proliferation in living areas.


Subject(s)
Air Pollution, Indoor , Fungi , Urbanization , Ventilation , Dust/analysis , Fungi/isolation & purification , Housing , Switzerland
12.
Indoor Air ; 30(6): 1213-1228, 2020 11.
Article in English | MEDLINE | ID: mdl-32424858

ABSTRACT

With the gradual reduction of emissions from building products, emissions from human occupants become more dominant indoors. The impact of human emissions on indoor air quality is inadequately understood. The aim of the Indoor Chemical Human Emissions and Reactivity (ICHEAR) project was to examine the impact on indoor air chemistry of whole-body, exhaled, and dermally emitted human bioeffluents under different conditions comprising human factors (t-shirts/shorts vs long-sleeve shirts/pants; age: teenagers, young adults, and seniors) and a variety of environmental factors (moderate vs high air temperature; low vs high relative humidity; presence vs absence of ozone). A series of human subject experiments were performed in a well-controlled stainless steel climate chamber. State-of-the-art measurement technologies were used to quantify the volatile organic compounds emitted by humans and their total OH reactivity; ammonia, nanoparticle, fluorescent biological aerosol particle (FBAP), and microbial emissions; and skin surface chemistry. This paper presents the design of the project, its methodologies, and preliminary results, comparing identical measurements performed with five groups, each composed of 4 volunteers (2 males and 2 females). The volunteers wore identical laundered new clothes and were asked to use the same set of fragrance-free personal care products. They occupied the ozone-free (<2 ppb) chamber for 3 hours (morning) and then left for a 10-min lunch break. Ozone (target concentration in occupied chamber ~35 ppb) was introduced 10 minutes after the volunteers returned to the chamber, and the measurements continued for another 2.5 hours. Under a given ozone condition, relatively small differences were observed in the steady-state concentrations of geranyl acetone, 6MHO, and 4OPA between the five groups. Larger variability was observed for acetone and isoprene. The absence or presence of ozone significantly influenced the steady-state concentrations of acetone, geranyl acetone, 6MHO, and 4OPA. Results of replicate experiments demonstrate the robustness of the experiments. Higher repeatability was achieved for dermally emitted compounds and their reaction products than for constituents of exhaled breath.


Subject(s)
Air Pollution, Indoor , Adolescent , Aerosols , Aged , Ammonia , Butadienes , Environmental Monitoring , Exhalation , Female , Hemiterpenes , Humans , Male , Odorants , Ozone , Terpenes , Volatile Organic Compounds , Young Adult
13.
Indoor Air ; 30(3): 481-491, 2020 05.
Article in English | MEDLINE | ID: mdl-32190933

ABSTRACT

Exposure to elevated levels of certain volatile organic compounds (VOCs) in households has been linked to deleterious health effects. This study presents the first large-scale investigation of VOC levels in 169 energy-efficient dwellings in Switzerland. Through a combination of physical measurements and questionnaire surveys, we investigated the influence of diverse building characteristics on indoor VOCs. Among 74 detected compounds, carbonyls, alkanes, and alkenes were the most abundant. Median concentration levels of formaldehyde (14 µg/m3 ), TVOC (212 µg/m3 ), benzene (<0.1 µg/m3 ), and toluene (22 µg/m3 ) were below the upper exposure limits. Nonetheless, 90% and 50% of dwellings exceeded the chronic exposure limits for formaldehyde (9 µg/m3 ) and TVOC (200 µg/m3 ), respectively. There was a strong positive correlation among VOCs that likely originated from common sources. Dwellings built between 1950s and 1990s, and especially, those with attached garages had higher TVOC concentrations. Interior thermal retrofit of dwellings and absence of mechanical ventilation system were associated with elevated levels of formaldehyde, aromatics, and alkanes. Overall, energy-renovated homes had higher levels of certain VOCs compared with newly built homes. The results suggest that energy efficiency measures in dwellings should be accompanied by actions to mitigate VOC exposures as to avoid adverse health outcomes.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Volatile Organic Compounds/analysis , Switzerland
14.
J Expo Sci Environ Epidemiol ; 30(2): 328-337, 2020 03.
Article in English | MEDLINE | ID: mdl-31636369

ABSTRACT

Inhalation exposure to pure and metabolic elevated carbon dioxide (CO2) concentration has been associated with impaired work performance, lower perceived air quality, and increased health symptoms. In this study, the concentration of metabolic CO2 was continuously measured in the inhalation zone of 41 subjects performing simulated office work. The measurements took place in an environmental chamber with well-controlled mechanical ventilation arranged as an office environment. The results showed the existence of a personal CO2 cloud in the inhalation zone of all test subjects, characterized by the excess of metabolic CO2 beyond the room background levels. For seated occupants, the median CO2 inhalation zone concentration levels were between 200 and 500 ppm above the background, and the third quartile up to 800 ppm above the background. Each study subject had distinct magnitude of the personal CO2 cloud owing to differences in metabolic CO2 generation, posture, nose geometry, and breathing pattern. A small desktop oscillating fan proved to be suitable for dispersing much of the personal CO2 cloud, thus reducing the inhalation zone concentration to background level. The results suggest that background measurements cannot capture the significant personal CO2 cloud effect in human microclimate.


Subject(s)
Air Pollution, Indoor/statistics & numerical data , Carbon Dioxide/analysis , Inhalation Exposure/statistics & numerical data , Workplace , Adult , Air Pollution , Air Pollution, Indoor/analysis , Data Collection , Female , Humans , Inhalation Exposure/analysis , Male , Ventilation
15.
PLoS One ; 14(11): e0225492, 2019.
Article in English | MEDLINE | ID: mdl-31725796

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0223136.].

16.
PLoS One ; 14(10): e0223136, 2019.
Article in English | MEDLINE | ID: mdl-31618240

ABSTRACT

Wildfires and associated emissions of particulate matter pose significant environmental and health concerns. In this study we propose tools to evaluate building resilience to extreme episodes of outdoor particulate matter using a combination of indoor and outdoor IoT measurements, coupled with survey-based information of occupants' perception and behaviour. We demonstrated the application of the tools on two buildings with different modes of ventilation during the Chico Camp fire event. We characterized the resilience of the buildings on different temporal and spatial scales using the well-established I/O ratio and a newly proposed E-index that evaluates indoor concentration in the context of adopted 24-hour exposure thresholds. Indoor PM2.5 concentration during the entire Chico Camp Fire event was 21 µg/m3 for 4th Street (Mechanically Ventilated) and 36 µg/m3 for Wurster Hall (Naturally Ventilated). The cumulative median I/O ratio during the fire event was 0.27 for 4th Street and 0.67 for Wurster Hall. Overall E-index for 4th Street was 0.82, suggesting that the whole building was resilient to outdoor air pollution while overall E-index was 1.69 for Wurster Hall suggesting that interventions are necessary. The survey revealed that occupant perception of workplace air quality aligns with measured PM2.5 in the two buildings. The results also highlight that a large portion of occupants wore face masks, even though the PM2.5 concentration was below WHO threshold level. The results of our study demonstrate the utility of the proposed IoT-enabled and survey tools to assess the degree of protection from air pollution of outdoor origin for a single building or across a portfolio of buildings. The proposed survey tool also provides direct links between the PM2.5 levels and occupants' perception and behavior.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/prevention & control , Occupational Exposure/adverse effects , Particulate Matter/analysis , Wildfires , Air Pollutants/standards , Air Pollution, Indoor/analysis , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Environmental Monitoring/standards , Humans , Occupational Exposure/prevention & control , Occupational Exposure/standards , Particle Size , Particulate Matter/standards , Spatio-Temporal Analysis , Surveys and Questionnaires/statistics & numerical data , Threshold Limit Values , Workplace/standards
17.
Environ Sci Technol ; 53(10): 5559-5575, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31034216

ABSTRACT

A growing body of evidence identifies clothing as an important mediator of human exposure to chemicals and particles, which may have public health significance. This paper reviews and critically assesses the state of knowledge regarding how clothing, during wear, influences exposure to molecular chemicals, abiotic particles, and biotic particles, including microbes and allergens. The underlying processes that govern the acquisition, retention, and transmission of clothing-associated contaminants and the consequences of these for subsequent exposures are explored. Chemicals of concern have been identified in clothing, including byproducts of their manufacture and chemicals that adhere to clothing during use and care. Analogously, clothing acts as a reservoir for biotic and abiotic particles acquired from occupational and environmental sources. Evidence suggests that while clothing can be protective by acting as a physical or chemical barrier, clothing-mediated exposures can be substantial in certain circumstances and may have adverse health consequences. This complex process is influenced by the type and history of the clothing; the nature of the contaminant; and by wear, care, and storage practices. Future research efforts are warranted to better quantify, predict, and control clothing-related exposures.


Subject(s)
Clothing , Environmental Exposure , Environmental Pollutants , Humans
18.
PLoS One ; 11(5): e0154991, 2016.
Article in English | MEDLINE | ID: mdl-27175913

ABSTRACT

Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 µm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses' station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3-1 µm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3-10 µm during occupied periods was 1.9 µg/m(3), approximately 2.5 times the concentration during unoccupied periods (0.8 µg/m(3)). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37-81%. Near-room indoor emissions and outdoor sources contributed 18-59% and 1-5%, respectively. Airborne particle levels in the size range 1-10 µm showed strong dependence on human activities, indicating the importance of indoor-generated particles for infant's exposure to airborne particulate matter in the NICU.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Intensive Care Units, Neonatal , Particulate Matter/analysis , Carbon Dioxide/analysis , Humans , Particle Size , Statistics as Topic , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...