Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1386260, 2024.
Article in English | MEDLINE | ID: mdl-38975349

ABSTRACT

Introduction: Lrba is a cytoplasmic protein involved in vesicular trafficking. Lrba-deficient (Lrba-/-) mice exhibit substantially higher levels of IgA in both serum and feces than wild-type (WT) mice. Transforming growth factor ß1 (TGFß1) and its receptors (TGFßR I and II) is essential for differentiating IgA+ B cells. Furthermore, increased IgA production suggests a potential connection between Lrba and the TGFßR signaling pathway in IgA production. However, the specific function of Lrba in B cell biology remains unknown. Aim: Given the increased IgA levels in Lrba-/- mice, the goal in this work was to explore the lymph organs where the switch to IgA occurs, and if TGFßR function is affected. Methods: Non-immunized Lrba-/- mice were compared with Lrba+/+ mice. IgA levels in the serum and feces, as well as during peripheral B cell development, were determined. IgA+ B cells and plasma cells were assessed in the small intestine and secondary lymphoid organs, such as the spleen, mesenteric lymph nodes, and Peyer's patches. The TGFßR signaling pathway was evaluated by determining the expression of TGFßR on B cells. Additionally, SMAD2 phosphorylation was measured under basal conditions and in response to recombinant TGFß. Finally, confocal microscopy was performed to investigate a possible interaction between Lrba and TGFßR in B cells. Results: Lrba-/- mice exhibited significantly higher levels of circulating IgA, IgA+ B, and plasma cells than in peripheral lymphoid organs those in WT mice. TGFßR expression on the membrane of B cells was similar in both Lrba-/- and Lrba+/+ mice. However, intracellular TGFßR expression was reduced in Lrba-/- mice. SMAD2 phosphorylation showed increased levels under basal conditions; stimulation with recombinant TGFß elicited a poorer response than in that in Lrba+/+ B cells. Finally, we found that Lrba colocalizes with TGFßR in B cells. Conclusion: Lrba is essential in controlling TGFßR signaling, subsequently regulating SMAD2 phosphorylation on B cells. This mechanism may explain the increased differentiation of IgA+ B cells and production of IgA-producing plasma cells.


Subject(s)
B-Lymphocytes , Cell Differentiation , Immunoglobulin A , Mice, Knockout , Signal Transduction , Animals , Immunoglobulin A/immunology , Mice , Cell Differentiation/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Receptors, Transforming Growth Factor beta/genetics , Mice, Inbred C57BL , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Smad2 Protein/metabolism , Peyer's Patches/immunology , Peyer's Patches/metabolism
2.
J Leukoc Biol ; 116(1): 33-53, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38428948

ABSTRACT

The mechanisms that negatively regulate inflammation upon a pathogenic stimulus are crucial for the maintenance of tissue integrity and organ function. T regulatory cells are one of the main drivers in controlling inflammation. The ability of T regulatory cells to adapt to different inflammatory cues and suppress inflammation is one of the relevant features of T regulatory cells. During this process, T regulatory cells express different transcription factors associated with their counterparts, Th helper cells, including Tbx21, GATA-3, Bcl6, and Rorc. The acquisition of this transcription factor helps the T regulatory cells to suppress and migrate to the different inflamed tissues. Additionally, the T regulatory cells have different mechanisms that preserve stability while acquiring a particular T regulatory cell subtype. This review focuses on describing T regulatory cell subtypes and the mechanisms that maintain their identity in health and diseases.


Subject(s)
Cell Plasticity , T-Lymphocytes, Regulatory , Humans , T-Lymphocytes, Regulatory/immunology , Animals , Cell Plasticity/immunology , Inflammation/immunology , Inflammation/pathology
5.
J Vis Exp ; (193)2023 03 03.
Article in English | MEDLINE | ID: mdl-36939240

ABSTRACT

IL-9 is a pleiotropic cytokine associated with various processes, including antitumor immunity, induction of allergic pathologies, and the immune response against helminth infections, where it plays an important role in the expulsion of the parasite. In a murine model of Nippostrongylus brasiliensis infection, IL-9 is produced mainly by CD4+ T lymphocytes and innate lymphoid cells found in the lung, small intestine, and draining lymph nodes. Given the technical difficulties involved in the intracellular staining of IL-9, as well as the complexity of isolating hematopoietic cells from the small intestine upon infection, there is a pressing need for a comprehensive but straightforward protocol to analyze the expression of IL-9 in different lymphoid and non-lymphoid tissues in this model. The protocol described here outlines the kinetics of IL-9 produced by CD4+ T cells and innate lymphoid cells in the lung and small intestine, the main organs targeted by N. brasiliensis, as well as in the mediastinal and mesenteric lymph nodes, throughout the infection. In addition, it details the number of larvae needed for infection, depending on the cell type and organ of interest. This protocol aims to assist in the standardization of assays to save time and resources by offering the opportunity to focus on the specific cells, organs, and disease stages of interest in the N. brasiliensis infection model.


Subject(s)
Interleukin-9 , Nippostrongylus , Mice , Animals , Nippostrongylus/physiology , Interleukin-9/metabolism , Immunity, Innate , Cytokines/metabolism , CD4-Positive T-Lymphocytes
6.
Front Immunol ; 13: 960356, 2022.
Article in English | MEDLINE | ID: mdl-35837389

ABSTRACT

[This corrects the article DOI: 10.3389/fimmu.2017.00441.].

7.
Nat Commun ; 13(1): 3811, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778404

ABSTRACT

Although IL-9 has potent anti-tumor activity in adoptive cell transfer therapy, some models suggest that it can promote tumor growth. Here, we show that IL-9 signaling is associated with poor outcomes in patients with various forms of lung cancer, and is required for lung tumor growth in multiple mouse models. CD4+ T cell-derived IL-9 promotes the expansion of both CD11c+ and CD11c- interstitial macrophage populations in lung tumor models. Mechanistically, the IL-9/macrophage axis requires arginase 1 (Arg1) to mediate tumor growth. Indeed, adoptive transfer of Arg1+ but not Arg1- lung macrophages to Il9r-/- mice promotes tumor growth. Moreover, targeting IL-9 signaling using macrophage-specific nanoparticles restricts lung tumor growth in mice. Lastly, elevated expression of IL-9R and Arg1 in tumor lesions is associated with poor prognosis in lung cancer patients. Thus, our study suggests the IL-9/macrophage/Arg1 axis is a potential therapeutic target for lung cancer therapy.


Subject(s)
Interleukin-9 , Lung Neoplasms , Macrophages , Animals , Carcinogenesis/metabolism , Interleukin-9/genetics , Interleukin-9/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Macrophages/metabolism , Macrophages/pathology , Macrophages, Alveolar/metabolism , Mice
8.
Front Immunol ; 13: 787713, 2022.
Article in English | MEDLINE | ID: mdl-35711429

ABSTRACT

Type 2 Innate lymphoid cells (ILC2s) are tissue-resident immune cells activated by epithelial-derived alarmins upon tissue damage. They regulate immunity against helminth parasites and allergies by expressing type 2 immune response cytokines including IL-9, known to be critical for inducing and potentiating the immune response in such context. Although ILC2s are reported to be the main source of IL-9 in mice during N. brasiliensis infection, the mechanisms that regulate the expression of IL-9 in these cells are yet to be described. Recent studies have shown that in addition to cytokines, multiple molecules can differentially modulate the functions of ILC2s in various contexts both in vitro and in vivo. Among these stimuli are lipid mediators and neuropeptides, which activate the PKA pathway and have been associated with the regulation of type 2 immune cytokines. In this work we found that ILC2s in mice infected with N. brasiliensis can be classified into different groups based on the expression of IL-9 and ST2. These distinct populations were distributed in the lung and the small intestine. Through the development of an in vitro culture system, we sought to determine the stimuli that regulate the expression of these markers in ILC2s. We identified the alarmin IL-33 as being a key player for increased IL-9 expression. Additionally, we found the PKA pathway to be a dual regulator of ILC2 cells, working synergistically with IL-33 to enhance IL-9 production and capable of modulating proliferation and the expression of ILC2 markers. These data provide further evidence of a high heterogeneity between ILC2 subsets in a context dependent manner and calls for careful consideration when choosing the markers to identify these cells in vivo. Distinguishing ILC2 subsets and dissecting their mechanisms of activation is critical for a deeper understanding of the biology of these cells, allowing their manipulation for therapeutic purposes.


Subject(s)
Immunity, Innate , Interleukin-33 , Animals , Cytokines , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-9/genetics , Lymphocytes , Mice
9.
J Immunol Res ; 2022: 2909487, 2022.
Article in English | MEDLINE | ID: mdl-35402623

ABSTRACT

The process by which blood cells are generated has been widely studied in homeostasis and during pathogen-triggered inflammatory response. Recently, murine lungs have been shown to be a significant source of hematopoietic progenitors in a process known as extramedullary hematopoiesis. Using multiparametric flow cytometry, we have identified mesenchymal, endothelial, and hematopoietic progenitor cells that express the secreted small protein Isthmin 1 (ISM1). Further characterization of hematopoietic progenitor cells indicated that ISM1+ Lineage- Sca-1+ c-kit+ (ISM1+ LSK) cells are enriched in short-term hematopoietic stem cells (ST-HSCs). Moreover, most Sca-1+ ISM1+ cells express the residence marker CD49a, and this correlated with their localization in the extravascular region of the lung, indicating that ISM1+ cells are lung-resident cells. We also observed that ISM1+ cells express TLR4, TLR5, and TLR9, and, in a mouse model of sepsis induced by P. aeruginosa, we observed that all the LSK and ISM1+LSK cells were affected. We conclude that ISM1 is a novel biomarker associated with progenitor-like cells. ISM1+ cells are involved in the response to a bacterial challenge, suggesting an association between ISM1-producing cells and dangerous inflammatory responses like sepsis.


Subject(s)
Hematopoietic Stem Cells , Sepsis , Animals , Hematopoiesis , Homeostasis , Intercellular Signaling Peptides and Proteins/metabolism , Lung/metabolism , Mice , Mice, Inbred C57BL , Proteins , Sepsis/metabolism
10.
Sci Immunol ; 7(69): eabg9296, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35302861

ABSTRACT

Asthma is a chronic inflammatory lung disease with intermittent flares predominately mediated through memory T cells. Yet, the identity of long-term memory cells that mediate allergic recall responses is not well defined. In this report, using a mouse model of chronic allergen exposure followed by an allergen-free rest period, we characterized a subpopulation of CD4+ T cells that secreted IL-9 as an obligate effector cytokine. IL-9-secreting cells had a resident memory T cell phenotype, and blocking IL-9 during a recall challenge or deleting IL-9 from T cells significantly diminished airway inflammation and airway hyperreactivity. T cells secreted IL-9 in an allergen recall-specific manner, and secretion was amplified by IL-33. Using scRNA-seq and scATAC-seq, we defined the cellular identity of a distinct population of T cells with a proallergic cytokine pattern. Thus, in a recall model of allergic airway inflammation, IL-9 secretion from a multicytokine-producing CD4+ T cell population was required for an allergen recall response.


Subject(s)
Asthma , Hypersensitivity , Allergens , CD4-Positive T-Lymphocytes , Cytokines , Humans , Inflammation , Interleukin-9
11.
Sci Immunol ; 7(68): eabi9768, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35179949

ABSTRACT

Despite IL-9 functioning as a pleiotropic cytokine in mucosal environments, the IL-9-responsive cell repertoire is still not well defined. Here, we found that IL-9 mediates proallergic activities in the lungs by targeting lung macrophages. IL-9 inhibits alveolar macrophage expansion and promotes recruitment of monocytes that develop into CD11c+ and CD11c- interstitial macrophage populations. Interstitial macrophages were required for IL-9-dependent allergic responses. Mechanistically, IL-9 affected the function of lung macrophages by inducing Arg1 activity. Compared with Arg1-deficient lung macrophages, Arg1-expressing macrophages expressed greater amounts of CCL5. Adoptive transfer of Arg1+ lung macrophages but not Arg1- lung macrophages promoted allergic inflammation that Il9r-/- mice were protected against. In parallel, the elevated expression of IL-9, IL-9R, Arg1, and CCL5 was correlated with disease in patients with asthma. Thus, our study uncovers an IL-9/macrophage/Arg1 axis as a potential therapeutic target for allergic airway inflammation.


Subject(s)
Asthma/immunology , Interleukin-9/immunology , Macrophages, Alveolar/immunology , Allergens/immunology , Animals , Antigens, Dermatophagoides/immunology , Arginase/genetics , Arginase/immunology , Chemokine CCL5/immunology , Child, Preschool , Female , Humans , Infant , Inflammation/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-9/genetics , Receptors, Interleukin-9/immunology
12.
Sci Rep ; 12(1): 2322, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149705

ABSTRACT

Acute lymphocytic leukemia is the most common type of cancer in pediatric individuals. Glucose regulated protein (GRP78) is an endoplasmic reticulum chaperone that facilitates the folding and assembly of proteins and regulates the unfolded protein response pathway. GRP78 has a role in survival of cancer and metastasis and cell-surface associated GRP78 (sGRP78) is expressed on cancer cells but not in normal cells. Here, we explored the presence of sGRP78 in pediatric B-ALL at diagnosis and investigated the correlation with bona fide markers of leukemia. By using a combination of flow cytometry and high multidimensional analysis, we found a distinctive cluster containing high levels of sGRP78, CD10, CD19, and CXCR4 in bone marrow samples obtained from High-risk leukemia patients, which was absent in the compartment of Standard-risk leukemia. We confirmed that sGRP78+CXCR4+ blood-derived cells were more frequent in High-risk leukemia patients. Finally, we analyzed the dissemination capacity of sGRP78 leukemia cells in a model of xenotransplantation. sGRP78+ cells emigrated to the bone marrow and lymph nodes, maintaining the expression of CXCR4. Testing the presence of sGRP78 and CXCR4 together with conventional markers may help to achieve a better categorization of High and Standard-risk pediatric leukemia at diagnosis.


Subject(s)
Endoplasmic Reticulum Chaperone BiP/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, CXCR4/metabolism , Adolescent , Animals , Antigens, CD/metabolism , Cell Line , Child , Child, Preschool , Female , Humans , Male , Mice, Inbred BALB C , Neoplasm Transplantation , Neoplastic Cells, Circulating/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/etiology , Risk Factors
13.
Front Immunol ; 12: 757967, 2021.
Article in English | MEDLINE | ID: mdl-34759931

ABSTRACT

Innate lymphoid cells (ILCs) are the most recently described group of lymphoid subpopulations. These tissue-resident cells display a heterogeneity resembling that observed on different groups of T cells, hence their categorization as cytotoxic NK cells and helper ILCs type 1, 2 and 3. Each one of these groups is highly diverse and expresses different markers in a context-dependent manner. Type 2 innate lymphoid cells (ILC2s) are activated in response to helminth parasites and regulate the immune response. They are involved in the etiology of diseases associated with allergic responses as well as in the maintenance of tissue homeostasis. Markers associated with their identification differ depending on the tissue and model used, making the study and understanding of these cells a cumbersome task. This review compiles evidence for the heterogeneity of ILC2s as well as discussion and analyses of molecular markers associated with their identity, function, tissue-dependent expression, and how these markers contribute to the interaction of ILC2s with specific microenvironments to maintain homeostasis or respond to pathogenic challenges.


Subject(s)
Antigens, Differentiation/analysis , Lymphocyte Subsets/immunology , Adipose Tissue, White/immunology , Adipose Tissue, White/pathology , Animals , Cytokines/metabolism , Helminthiasis/immunology , Histocompatibility Antigens Class II/immunology , Homeostasis , Humans , Immunophenotyping , Inflammation , Intestines/immunology , Lung/immunology , Lymphocyte Subsets/chemistry , Mice , Nutrients , Organ Specificity , Proto-Oncogene Proteins c-kit/immunology , Receptors, Cell Surface/immunology , Skin/immunology , Stem Cell Factor/immunology
14.
Front Immunol ; 12: 668369, 2021.
Article in English | MEDLINE | ID: mdl-34220814

ABSTRACT

In cutaneous T cell lymphoma (CTCL), a dominant Th2 profile associated with disease progression has been proposed. Moreover, although the production and regulation of IL-4 expression during the early stages of the disease may have important implications in later stages, these processes are poorly understood. Here, we demonstrate the presence of TOX+ CD4+ T cells that produce IL-4+ in early-stage skin lesions of CTCL patients and reveal a complex mechanism by which the NLRP3 receptor promotes a Th2 response by controlling IL-4 production. Unassembled NLRP3 is able to translocate to the nucleus of malignant CD4+ T cells, where it binds to the human il-4 promoter. Accordingly, IL-4 expression is decreased by knocking down and increased by promoting the nuclear localization of NLRP3. We describe a positive feedback loop in which IL-4 inhibits NLRP3 inflammasome assembly, thereby further increasing its production. IL-4 induced a potentially malignant phenotype measured based on TOX expression and proliferation. This mechanism of IL-4 regulation mediated by NLRP3 is amplified in late-stage CTCL associated with disease progression. These results indicate that NLRP3 might be a key regulator of IL-4 expression in TOX+ CD4+ T cells of CTCL patients and that this mechanism might have important implications in the progression of the disease.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Interleukin-4/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphoma, T-Cell, Cutaneous/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Skin Neoplasms/metabolism , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Cytotoxicity, Immunologic , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Interleukin-4/genetics , Jurkat Cells , Lymphocytes, Tumor-Infiltrating/immunology , Lymphoma, T-Cell, Cutaneous/genetics , Lymphoma, T-Cell, Cutaneous/immunology , Mexico , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phenotype , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/immunology
15.
Nature ; 592(7852): 128-132, 2021 04.
Article in English | MEDLINE | ID: mdl-33536623

ABSTRACT

Tissue-resident innate lymphoid cells (ILCs) help sustain barrier function and respond to local signals. ILCs are traditionally classified as ILC1, ILC2 or ILC3 on the basis of their expression of specific transcription factors and cytokines1. In the skin, disease-specific production of ILC3-associated cytokines interleukin (IL)-17 and IL-22 in response to IL-23 signalling contributes to dermal inflammation in psoriasis. However, it is not known whether this response is initiated by pre-committed ILCs or by cell-state transitions. Here we show that the induction of psoriasis in mice by IL-23 or imiquimod reconfigures a spectrum of skin ILCs, which converge on a pathogenic ILC3-like state. Tissue-resident ILCs were necessary and sufficient, in the absence of circulatory ILCs, to drive pathology. Single-cell RNA-sequencing (scRNA-seq) profiles of skin ILCs along a time course of psoriatic inflammation formed a dense transcriptional continuum-even at steady state-reflecting fluid ILC states, including a naive or quiescent-like state and an ILC2 effector state. Upon disease induction, the continuum shifted rapidly to span a mixed, ILC3-like subset also expressing cytokines characteristic of ILC2s, which we inferred as arising through multiple trajectories. We confirmed the transition potential of quiescent-like and ILC2 states using in vitro experiments, single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) and in vivo fate mapping. Our results highlight the range and flexibility of skin ILC responses, suggesting that immune activities primed in healthy tissues dynamically adapt to provocations and, left unchecked, drive pathological remodelling.


Subject(s)
Immunity, Innate/immunology , Lymphocytes/immunology , Lymphocytes/pathology , Psoriasis/immunology , Psoriasis/pathology , Skin/immunology , Skin/pathology , Animals , Cell Differentiation , Cell Lineage , Chromatin/genetics , Disease Models, Animal , Female , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Interleukin-23/immunology , Latent Class Analysis , Lymphocytes/classification , Male , Mice , Psoriasis/genetics , RNA, Small Cytoplasmic/genetics , Reproducibility of Results , Time Factors
16.
J Allergy Clin Immunol ; 147(1): 280-295, 2021 01.
Article in English | MEDLINE | ID: mdl-33069715

ABSTRACT

BACKGROUND: This study group has previously identified IL-9-producing mucosal mast cell (MMC9) as the primary source of IL-9 to drive intestinal mastocytosis and experimental IgE-mediated food allergy. However, the molecular mechanisms that regulate the expansion of MMC9s remain unknown. OBJECTIVES: This study hypothesized that IL-4 regulates MMC9 development and MMC9-dependent experimental IgE-mediated food allergy. METHODS: An epicutaneous sensitization model was used and bone marrow reconstitution experiments were performed to test the requirement of IL-4 receptor α (IL-4Rα) signaling on MMC9s in experimental IgE-mediated food allergy. Flow cytometric, bulk, and single-cell RNA-sequencing analyses on small intestine (SI) MMC9s were performed to illuminate MMC9 transcriptional signature and the effect of IL-4Rα signaling on MMC9 function. A bone marrow-derived MMC9 culture system was used to define IL-4-BATF signaling in MMC9 development. RESULTS: Epicutaneous sensitization- and bone marrow reconstitution-based models of IgE-mediated food allergy revealed an IL-4 signaling-dependent cell-intrinsic effect on SI MMC9 accumulation and food allergy severity. RNA-sequencing analysis of SI-MMC9s identified 410 gene transcripts reciprocally regulated by IL-4 signaling, including Il9 and Batf. Insilico analyses identified a 3491-gene MMC9 transcriptional signature and identified 2 transcriptionally distinct SI MMC9 populations enriched for metabolic or inflammatory programs. Employing an in vitro MMC9-culture model system showed that generation of MMC9-like cells was induced by IL-4 and this was in part dependent on BATF. CONCLUSIONS: IL-4Rα signaling directly modulates MMC9 function and exacerbation of experimental IgE-mediated food allergic reactions. IL-4Rα regulation of MMC9s is in part BATF-dependent and occurs via modulation of metabolic transcriptional programs.


Subject(s)
Basic-Leucine Zipper Transcription Factors/immunology , Food Hypersensitivity/immunology , Interleukin-4/immunology , Interleukin-9/immunology , Intestinal Mucosa/immunology , Mast Cells/immunology , Signal Transduction/immunology , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Disease Models, Animal , Food Hypersensitivity/genetics , Food Hypersensitivity/pathology , Interleukin-4/genetics , Interleukin-9/genetics , Intestinal Mucosa/pathology , Mast Cells/pathology , Mice , Mice, Knockout , Signal Transduction/genetics
17.
Nat Commun ; 11(1): 3334, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32620760

ABSTRACT

TH17 cells exemplify environmental immune adaptation: they can acquire both a pathogenic and an anti-inflammatory fate. However, it is not known whether the anti-inflammatory fate is merely a vestigial trait, or whether it serves to preserve the integrity of the host tissues. Here we show that the capacity of TH17 cells to acquire an anti-inflammatory fate is necessary to sustain immunological tolerance, yet it impairs immune protection against S. aureus. Additionally, we find that TGF-ß signalling via Smad3/Smad4 is sufficient for the expression of the anti-inflammatory cytokine, IL-10, in TH17 cells. Our data thus indicate a key function of TH17 cell plasticity in maintaining immune homeostasis, and dissect the molecular mechanisms explaining the functional flexibility of TH17 cells with regard to environmental changes.


Subject(s)
Homeostasis/immunology , Inflammation/immunology , Interleukin-10/immunology , Intestines/immunology , Th17 Cells/immunology , Animals , Cell Plasticity/immunology , Disease Resistance/genetics , Disease Resistance/immunology , HEK293 Cells , Humans , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-17/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcus aureus/immunology , Staphylococcus aureus/physiology , Th17 Cells/metabolism , Transforming Growth Factor beta/immunology , Transforming Growth Factor beta/metabolism
18.
Immunohorizons ; 4(5): 282-291, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32439753

ABSTRACT

Generation of allelic gene reporter mice has provided a powerful tool to study gene function in vivo. In conjunction with imaging technologies, reporter mouse models facilitate studies of cell lineage tracing, live cell imaging, and gene expression in the context of diseases. Although there are several advantages to using reporter mice, caution is important to ensure the fidelity of the reporter protein representing the gene of interest. In this study, we compared the efficiency of two Il9 reporter strains Il9citrine and Il9GFP in representing IL-9-producing CD4+ TH9 cells. Although both alleles show high specificity in IL-9-expressing populations, we observed that the Il9GFP allele visualized a much larger proportion of the IL-9-producing cells in culture than the Il9citrine reporter allele. In defining the mechanistic basis for these differences, chromatin immunoprecipitation and chromatin accessibility assay showed that the Il9citrine allele was transcriptionally less active in TH9 cells compared with the wild-type allele. The Il9citrine allele also only captured a fraction of IL-9-expressing bone marrow-derived mast cells. In contrast, the Il9 citrine reporter detected Il9 expression in type 2 innate lymphoid cells at a greater percentage than could be identified by IL-9 intracellular cytokine staining. Taken together, our findings demonstrate that the accuracy of IL-9 reporter mouse models may vary with the cell type being examined. These studies demonstrate the importance of choosing appropriate reporter mouse models that are optimal for detecting the cell type of interest as well as the accuracy of conclusions.


Subject(s)
Alleles , Cell Lineage , Receptors, Interleukin-9/biosynthesis , T-Lymphocytes, Helper-Inducer/immunology , Animals , Cell Differentiation , Chromatin Immunoprecipitation , Fluorescent Antibody Technique , Immunity, Innate , Mice , Mice, 129 Strain , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-9/genetics , T-Lymphocytes, Helper-Inducer/cytology
19.
Cell ; 178(5): 1176-1188.e15, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442406

ABSTRACT

Adaptive immunity provides life-long protection by generating central and effector memory T cells and the most recently described tissue resident memory T (TRM) cells. However, the cellular origin of CD4 TRM cells and their contribution to host defense remain elusive. Using IL-17A tracking-fate mouse models, we found that a significant fraction of lung CD4 TRM cells derive from IL-17A-producing effector (TH17) cells following immunization with heat-killed Klebsiella pneumonia (Kp). These exTH17 TRM cells are maintained in the lung by IL-7, produced by lymphatic endothelial cells. During a memory response, neither antibodies, γδ T cells, nor circulatory T cells are sufficient for the rapid host defense required to eliminate Kp. Conversely, using parabiosis and depletion studies, we demonstrated that exTH17 TRM cells play an important role in bacterial clearance. Thus, we delineate the origin and function of airway CD4 TRM cells during bacterial infection, offering novel strategies for targeted vaccine design.


Subject(s)
Klebsiella Infections/immunology , Th17 Cells/immunology , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Diphtheria Toxin/pharmacology , Disease Models, Animal , Female , Immunologic Memory , Interleukin-17/genetics , Interleukin-17/metabolism , Klebsiella Infections/pathology , Klebsiella pneumoniae/immunology , Klebsiella pneumoniae/pathogenicity , Lung/drug effects , Lung/metabolism , Lung/microbiology , Mice , Mice, Inbred C57BL , Th17 Cells/cytology , Th17 Cells/metabolism
20.
Curr Opin Pharmacol ; 48: 48-56, 2019 10.
Article in English | MEDLINE | ID: mdl-31136908

ABSTRACT

As current levels of antimicrobial resistance are alarming, the World Health Organization urged the development of new antimicrobials to fight infections produced by multidrug resistant bacteria. Antibiotics impose severe selective pressure for the development of resistance, and currently bacteria resistant to all of them exist. In this review, we discuss the release and development of new antibacterial drugs and their properties as well as the current advances in the development of alternative approaches to combat bacterial infections, including the repurposing of drugs, anti-virulence therapies, the use of photosensitizers, phage therapy, and immunotherapies, with an emphasis on what is currently known about the possible development of bacterial resistance against them.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Drug Resistance, Bacterial , Animals , Drug Utilization , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...