Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arthropod Struct Dev ; 46(1): 30-38, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27329320

ABSTRACT

We identify the presence of multiple vascular channels within the spider fang. These channels seem to serve the transport of zinc to the tip of the fang to cross-link the protein matrix by binding to histidine residues. According to amino acid and elemental analysis of fangs extracted shortly after ecdysis, His-rich proteins are deposited before Zn is incorporated into the cuticle. Microscopic and spectroscopic investigations in the electron microscope and synchrotron radiation experiments suggest that Zn ions are transported through these channels in a liable (yet unidentified) form, and then form stable complexes upon His binding. The resulting cross-linking through the Zn-His complexes is conferring hardness to the fang. Our observations of nano-channels serving the Zn-transport within the His-rich protein matrix of the fibre reinforced spider fang may also support recent bio-inspired attempts to design artificial polymeric vascular materials for self-healing and in-situ curing.


Subject(s)
Animal Structures/physiology , Arthropod Proteins/physiology , Ions , Spiders/physiology , Zinc/chemistry , Animals , Chitin/chemistry , Cross-Linking Reagents/chemistry , Histidine/chemistry , Insulin/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Molting/physiology , Nanotechnology , Protein Binding , Serum Albumin, Bovine/chemistry , Synchrotrons , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...