Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Flow Turbul Combust ; 110(3): 581-600, 2023.
Article in English | MEDLINE | ID: mdl-36714791

ABSTRACT

Three secondary flows, namely the inward radial flow along the cyclone lid, the downward axial flow along the external surface of the vortex finder, and the radial inward flow below the vortex finder (lip flow) have been studied at a wide range of flow rate 0.22-7.54 LPM using the LES simulations. To evaluate these flows the corresponding methods were originally proposed. The highly significant effect of the Reynolds number on these secondary flows has been described by equations. The main finding is that the magnitude of all secondary flows decrease with increasing Reynolds number. The secondary inward radial flow along the cyclone lid is not constant and reaches its maximum value at the central radial position between the vortex finder external wall and the cyclone wall. The secondary downward axial flow along the external surface of the vortex finder significantly increases at the lowest part of the vortex finder and it is much larger than the secondary flow along the cyclone lid. The lip flow is much larger than the secondary inward radial flow along the cyclone lid, which was assumed in cyclone models to be equal to the lip flow, and the ratio of these two secondary flows is practically independent of the Reynolds number.

2.
Sci Total Environ ; 605-606: 929-945, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28688352

ABSTRACT

Personal monitors based on unipolar diffusion charging (miniDiSC/DiSCmini, NanoTracer, Partector) can be used to assess the individual exposure to nanoparticles in different environments. The charge acquired by the aerosol particles is nearly proportional to the particle diameter and, by coincidence, also nearly proportional to the alveolar lung-deposited surface area (LDSA), the metric reported by all three instruments. In addition, the miniDiSC/DiSCmini and the NanoTracer report particle number concentration and mean particle size. In view of their use for personal exposure studies, the comparability of these personal monitors was assessed in two measurement campaigns. Altogether 29 different polydisperse test aerosols were generated during the two campaigns, covering a large range of particle sizes, morphologies and concentrations. The data provided by the personal monitors were compared with those obtained from reference instruments: a scanning mobility particle sizer (SMPS) for LDSA and mean particle size and a ultrafine particle counter (UCPC) for number concentration. The results indicated that the LDSA concentrations and the mean particle sizes provided by all investigated instruments in this study were in the order of ±30% of the reference value obtained from the SMPS when the particle sizes of the test aerosols generated were within 20-400nm and the instruments were properly calibrated. Particle size, morphology and concentration did not have a major effect within the aforementioned limits. The comparability of the number concentrations was found to be slightly worse and in the range of ±50% of the reference value obtained from the UCPC. In addition, a minor effect of the particle morphology on the number concentration measurements was observed. The presence of particles >400nm can drastically bias the measurement results of all instruments and all metrics determined.


Subject(s)
Air Pollutants, Occupational/analysis , Environmental Monitoring/instrumentation , Nanoparticles/analysis , Occupational Exposure/analysis , Wearable Electronic Devices , Aerosols , Humans , Particle Size , Workplace
3.
Ann Occup Hyg ; 60(6): 731-47, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27074799

ABSTRACT

Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition in olfactory mucosa on particle size implies that the occupation deposition of welding fume manganese can be expected to vary with welding method.


Subject(s)
Air Pollutants, Occupational/toxicity , Nanoparticles/analysis , Nasal Absorption , Welding/methods , Humans , Inhalation Exposure , Male , Manganese/analysis , Manganese/toxicity , Models, Statistical , Nanoparticles/toxicity , Occupational Exposure/adverse effects , Particle Size , Respiratory System/chemistry , Respiratory System/pathology
4.
J Environ Monit ; 14(2): 420-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22009365

ABSTRACT

Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions calculated from the OPC data are closely correlated with the results of the particle size-selective sampling using the CIP 10. Furthermore, the OPC data allow calculation of the thoracic fraction of workplace aerosol (not measured by sampling), which is interesting in the presence of allergenic particles like fungi spores. The results also show that the modified COP inlet adequately samples inhalable aerosol in the range of workplace particle-size distribution.


Subject(s)
Aerosols/analysis , Air Pollutants, Occupational/analysis , Environmental Monitoring/methods , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Environmental Monitoring/instrumentation , Humans , Particle Size , Particulate Matter/analysis , Photometry , Workplace/statistics & numerical data
5.
Ann Occup Hyg ; 55(1): 1-5, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21233257

ABSTRACT

In 2010, the European Commission held a short consultation on a proposed definition for nanomaterials, to be used in European Union legislation and programmes. This was in response to a European Parliament resolution, and the definition followed a proposal by one of the Commission's scientific committees. The definition has three parts: on size distribution, size of internal structural elements, and surface area; a material caught by any of these parts meets the definition. There are a number of problems. The definition seems to be written with engineered nanomaterials in mind but as written applies to non-supplied materials, such as smokes. The structural element component seems to capture items such as sunscreen and tennis rackets, which include nanomaterials. Use of the definition will require some international standards, which have yet to be written and which will involve some difficult decisions. It is understandable why there are both size and surface area requirements, but they are not wholly consistent. The Commission plans a further consultation in 2012, but it might be better to delay this until after the standardisation work.


Subject(s)
Nanoparticles , Terminology as Topic , European Union , Nanoparticles/classification
6.
Ann Occup Hyg ; 54(1): 100-16, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19955328

ABSTRACT

An inhaling mannequin, CALTOOL, was used in a specially ventilated room to compare the concentrations inhaled with those sampled by samplers mounted across the breathing zone. The CALTOOL is made from metal sheets and consists of a cylindrical torso (42 x 24 x 54 cm) with a circular cylinder as head. A circular nozzle simulates the mouth. This nozzle is part of a cassette that holds a filter. The inhalation rate is not periodic but kept constant at nominally 20 l min(-1). The CALTOOL was placed in a horizontal air stream ( approximately 10 cm s(-1)) either facing or back to the wind. In front of the lower chest of the CALTOOL, a particle source was mounted which emitted particles with a momentum directed upwards at an angle of 45 degrees towards the CALTOOL. Five monodisperse aluminium oxide powders were used as test aerosols. The mass median aerodynamic diameters of the test aerosols ranged approximately 10 to 95 mum. Six conically shaped aerosol samplers were mounted horizontally and over the breathing zone of the CALTOOL, one on each shoulder, three across the upper torso, and one at the lower torso centre. Four to six runs per test aerosol and CALTOOL orientation in the airflow were conducted. The samples were analysed gravimetrically. The concentration ratio aerosol sampler to the CALTOOL cassette was determined for the investigated mounting positions. The results showed that when the CALTOOL was exposed to particles emitted with momentum from a point source in front of the lower chest, the variation in concentration over the breathing zone was large. The ratio of the concentration sampled by an aerosol sampler mounted somewhere within the breathing zone to the CALTOOL cassette concentration, would, for specific particle sizes, easily differ by a factor of 3, but may extend up to 10-100, depending on the particular conditions. The basic concept of a breathing zone consisting of a hemisphere of radius 25-30 cm is therefore not well suited for workers handling a point source emitting large particles. For such sampling situations, it is suggested that the radius of the breathing zone is reduced to 10 cm, which may be achieved by a head-mounted sampler.


Subject(s)
Air Pollutants, Occupational/analysis , Aluminum Oxide/analysis , Environmental Monitoring/methods , Inhalation Exposure/analysis , Manikins , Particulate Matter/analysis , Aerosols/analysis , Aerosols/chemistry , Air Movements , Air Pollutants, Occupational/chemistry , Aluminum Oxide/chemistry , Environmental Monitoring/instrumentation , Equipment Design , Filtration/instrumentation , Humans , Inhalation/physiology , Inhalation Exposure/statistics & numerical data , Occupational Exposure/analysis , Particle Size , Particulate Matter/chemistry , Temperature , Ventilation
7.
J Occup Environ Hyg ; 7(1): 35-45, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19904658

ABSTRACT

Elemental carbon has been proposed as a marker of diesel particulate matter. The objective of this study was to investigate if water-soluble carbonaceous compounds could be responsible for positive bias of elemental carbon using NIOSH Method 5040 with a thermo-optical carbon transmittance analyzer. Filter samples from eight different aerosol environments were used: pure diesel exhaust fume with a high content of elemental carbon, pure diesel exhaust fume with a low content of elemental carbon, pure biodiesel exhaust fume, pure woodsmoke, an urban road tunnel, an urban street canyon, an urban background site, and residential woodburning in an urban area. Part of each filter sample was analyzed directly with a thermo-optical carbon analyzer, and another part was extracted with water. This water-soluble extract was filtered to remove particles, spiked onto filter punches, and analyzed with a thermo-optical transmittance carbon analyzer. The ratio of elemental carbon in the water-soluble extract to the particulate sample measurement was 18, 12, and 7%, respectively, for the samples of pure woodsmoke, residential woodburning, and urban background. Samples with diesel particulate matter and ambient samples with motor exhaust detected no elemental carbon in the water-soluble extract. Since no particles were present in the filtered water-soluble extract, part of the water-soluble organic carbon species, existing or created during analysis, are misclassified as elemental carbon with this analysis. The conclusion is that in measuring elemental carbon in particulate aerosol samples with thermo-optical transmittance analysis, woodsmoke, and biomass combustion samples show a positive bias of elemental carbon. The water-soluble EC could be used as a simple method to indicate other sources, such as wood or other biomass combustion aerosol particles.


Subject(s)
Air Pollutants/analysis , Carbon/analysis , Particulate Matter/analysis , Smoke/analysis , Vehicle Emissions/analysis , Bias , Humans , Photometry/methods , Specimen Handling/methods
9.
Ann Occup Hyg ; 53(2): 99-116, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19196747

ABSTRACT

There is a need for a small personal aerosol sampler for measuring occupational exposure to airborne particles in the breathing zone. Existing aerosol samplers are too large to be mounted inside modern welder's protective equipment without disturbing the worker. A headset-mounted mini sampler has been developed to fill this gap with focus on manganese exposure. This mini sampler is easy to use and can be mounted inside modern, slimline welder's face shield. The mini sampler is based on a commercially available 13-mm filter holder that has been modified to incorporate an inlet nozzle made of aluminium. The nominal flow rate of the mini sampler is 0.75 l min(-1). The mini sampler is to be worn mounted on a headset, modified from professional microphone headsets. Several aspects related to using the mini sampler have been tested by personal and static sampling at five workplaces and in the laboratory. Four headset models were tested for their suitability as a sampler holder, of which three models were accepted by the welders. The sampling bias of the mini sampler versus the IOM sampler and the open-face 25-mm filter holder, respectively, depends on the size distribution of the sampled aerosol. At the lowest encountered mass concentration ratio of the open-face 25-mm filter holder to the IOM sampler (0.65), the sampling bias of the mini sampler versus the IOM sampler is approximately -26% and versus the open-face 25-mm filter holder is approximately +12%. For manganese, the negative root mean square (RMS) sampling bias of the mini sampler versus the IOM sampler is -0.046 and versus the open-face 25-mm filter holder is non-significant. Both these biases are statistically non-significant. The mini sampler can therefore be employed for determining welders' occupational exposure to manganese. The pressure drop across the filter can become excessive due to the small filtration area. Compared to the Casella Apex pump, the SKC AirChek2000 pump was generally found to be able to keep its flow rate constant within +/-5% at higher concentrations and for longer sampling times. Our results indicate that the inhalable fraction of the welding aerosol mass at the visited plants only consisted of 25-55% welding fume particles (agglomerates of coagulated particles generated by nucleation/condensation). The rest of the mass is made up of particles from spattering and grinding. More than 65% of manganese is generally found in the fume particles. The weighing precision of 13-mm filters is 2.2 microg. The RMS sample loss due to transport when loaded samples are shipped by mail in padded envelopes is 6 microg. Both figures are very low in comparison to the mass expected to be collected by personal sampling, generally exceeding 200 microg. The headset-mounted mini sampler is user-friendly, easy to adjust individually, does not disturb the welder during sampling and allows sampling inside personal protective equipment. The headset mounting arrangement improves personal sampling as it maintains the sampler close to the nose/mouth during the whole sampling period. This study shows that the developed headset-mounted mini sampler is suitable for assessing exposure to manganese in welding aerosol.


Subject(s)
Air Pollutants, Occupational/analysis , Environmental Monitoring/instrumentation , Occupational Exposure/analysis , Welding , Aerosols/analysis , Environmental Monitoring/methods , Equipment Design , Humans , Manganese/analysis
10.
Ann Occup Hyg ; 52(6): 413-7, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18573808

ABSTRACT

The reporting of measurement uncertainty has recently undergone a major harmonization whereby characteristics of a measurement method obtained during establishment and application are combined componentwise. For example, the sometimes-pesky systematic error is included. A bias component of uncertainty can be often easily established as the uncertainty in the bias. However, beyond simply arriving at a value for uncertainty, meaning to this uncertainty if needed can sometimes be developed in terms of prediction confidence in uncertainty-based intervals covering what is to be measured. To this end, a link between concepts of accuracy and uncertainty is established through a simple yet accurate approximation to a random variable known as the non-central Student's t-distribution. Without a measureless and perpetual uncertainty, the drama of human life would be destroyed. Winston Churchill.


Subject(s)
Uncertainty , Bias , Data Interpretation, Statistical , Humans
11.
Ann Occup Hyg ; 51(4): 379-83, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17456580

ABSTRACT

A simple theoretical model is presented for the distribution of air speeds in a modified horizontal elutriator consisting of groups of plates with different lengths. Equations are presented for calculating the particle penetration both in channels of shortended plate lengths, as downstream the end of a shortended plate.


Subject(s)
Air Pollutants, Occupational/adverse effects , Dust/analysis , Environmental Monitoring/instrumentation , Particle Size , Aerosols , Humans , Models, Theoretical
13.
Inhal Toxicol ; 16(1): 45-52, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14744664

ABSTRACT

More efficient methods are needed to aerosolize dry powders for short-duration inhalation exposures at high concentrations. There is an increasing need to reach the peripheral lung with dry powder medications as well as with collected ambient aerosol particulates in environmental research projects. In a novel aerosol generator, a fixed volume of compressed air was used to create a short burst of a highly concentrated aerosol in a 300-ml holding chamber. Collected diesel soot was deagglomerated to a fine aerosol with a mass median aerodynamic diameter (MMAD) of 0.55 microm, not much larger than the 0.25 microm MMAD of diesel exhaust particles measured in air. A fine powder such as 3-microm silica particles was completely deagglomerated to an aerosol with a MMAD of 3.5 microm. Immediately after generation, the aerosol was available for exposure at a chosen flow rate by the use of an automated valve system. Tritium-labeled diesel soot was thus used to expose the isolated perfused rat lung at an air concentration of approximately 3 mg/L and a flow rate of 370 ml/min in a 1-min-long exposure. The lungs were ventilated at 75 breaths/min and a tidal volume of 1.13 +/- 0.11 ml (SD, n = 3). Results showed that 19.8 +/- 1.1 microg (SD, n = 3) soot was deposited in the lungs. This amount constitutes 9.5% of the amount inhaled and is close to literature data on deposition of similar sized particles in the rat lung. More than 97% of the deposited soot was located distal to the extrapulmonary bronchi, indicating that the system delivers a highly respirable aerosol. The aerosol system is particularly useful for peripheral lung delivery of collected ambient aerosols or dry powder pharmaceuticals following a minimal effort in formulation of the powder.


Subject(s)
Lung/pathology , Vehicle Emissions/toxicity , Administration, Inhalation , Aerosols , Animals , Atmosphere Exposure Chambers , Female , In Vitro Techniques , Particle Size , Perfusion , Powders , Rats , Rats, Sprague-Dawley , Silicon Dioxide/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...