Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Conserv Physiol ; 11(1): coad064, 2023.
Article in English | MEDLINE | ID: mdl-37732160

ABSTRACT

Climate change is expected to increase the intensity and occurrence of drought in tropical regions, potentially affecting the phenology and physiology of tree species. Phenological activity may respond to a drying and warming environment by advancing reproductive timing and/or diminishing the production of flowers and fruits. These changes have the potential to disrupt important ecological processes, with potentially wide-ranging effects on tropical forest function. Here, we analysed the monthly flowering and fruiting phenology of a tree community (337 individuals from 30 species) over 7 years in a lowland tropical rainforest in northeastern Australia and its response to a throughfall exclusion drought experiment (TFE) that was carried out from 2016 to 2018 (3 years), excluding approximately 30% of rainfall. We further examined the ecophysiological effects of the TFE on the elemental (C:N) and stable isotope (δ13C and δ15N) composition of leaves, and on the stable isotope composition (δ13C and δ18O) of stem wood of four tree species. At the community level, there was no detectable effect of the TFE on flowering activity overall, but there was a significant effect recorded on fruiting and varying responses from the selected species. The reproductive phenology and physiology of the four species examined in detail were largely resistant to impacts of the TFE treatment. One canopy species in the TFE significantly increased in fruiting and flowering activity, whereas one understory species decreased significantly in both. There was a significant interaction between the TFE treatment and season on leaf C:N for two species. Stable isotope responses were also variable among species, indicating species-specific responses to the TFE. Thus, we did not observe consistent patterns in physiological and phenological changes in the tree community within the 3 years of TFE treatment examined in this study.

2.
J Biomol Struct Dyn ; : 1-11, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37572327

ABSTRACT

Several secreted proteins from helminths (parasitic worms) have been shown to have immunomodulatory activities. Asparaginyl-tRNA synthetases are abundantly secreted in the filarial nematode Brugia malayi (BmAsnRS) and the parasitic flatworm Schistosoma japonicum (SjAsnRS), indicating a possible immune function. The suggestion is supported by BmAsnRS alleviating disease symptoms in a T-cell transfer mouse model of colitis. This immunomodulatory function is potentially related to an N-terminal extension domain present in eukaryotic AsnRS proteins but few structure/function studies have been done on this domain. Here we have determined the three-dimensional solution structure of the N-terminal extension domain of SjAsnRS. A protein containing the 114 N-terminal amino acids of SjAsnRS was recombinantly expressed with isotopic labelling to allow structure determination using 3D NMR spectroscopy, and analysis of dynamics using NMR relaxation experiments. Structural comparisons of the N-terminal extension domain of SjAsnRS with filarial and human homologues highlight a high degree of variability in the ß-hairpin region of these eukaryotic N-AsnRS proteins, but similarities in the disorder of the C-terminal regions. Limitations in PrDOS-based intrinsically disordered region (IDR) model predictions were also evident in this comparison. Empirical structural data such as that presented in our study for N-SjAsnRS will enhance the prediction of sequence-homology based structure modelling and prediction of IDRs in the future.Communicated by Ramaswamy H. Sarma.

3.
Nature ; 598(7881): 468-472, 2021 10.
Article in English | MEDLINE | ID: mdl-34552242

ABSTRACT

The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems7,8.


Subject(s)
Carbon Cycle , Ecosystem , Plants/metabolism , Water Cycle , Carbon Dioxide/metabolism , Climate , Datasets as Topic , Humidity , Plants/classification , Principal Component Analysis
4.
Glob Chang Biol ; 27(19): 4727-4744, 2021 10.
Article in English | MEDLINE | ID: mdl-34165839

ABSTRACT

Gross primary productivity (GPP) of wooded ecosystems (forests and savannas) is central to the global carbon cycle, comprising 67%-75% of total global terrestrial GPP. Climate change may alter this flux by increasing the frequency of temperatures beyond the thermal optimum of GPP (Topt ). We examined the relationship between GPP and air temperature (Ta) in 17 wooded ecosystems dominated by a single plant functional type (broadleaf evergreen trees) occurring over a broad climatic gradient encompassing five ecoregions across Australia ranging from tropical in the north to Mediterranean and temperate in the south. We applied a novel boundary-line analysis to eddy covariance flux observations to (a) derive ecosystem GPP-Ta relationships and Topt (including seasonal analyses for five tropical savannas); (b) quantitatively and qualitatively assess GPP-Ta relationships within and among ecoregions; (c) examine the relationship between Topt and mean daytime air temperature (MDTa) across all ecosystems; and (d) examine how down-welling short-wave radiation (Fsd) and vapour pressure deficit (VPD) influence the GPP-Ta relationship. GPP-Ta relationships were convex parabolas with narrow curves in tropical forests, tropical savannas (wet season), and temperate forests, and wider curves in temperate woodlands, Mediterranean woodlands, and tropical savannas (dry season). Ecosystem Topt ranged from 15℃ (temperate forest) to 32℃ (tropical savanna-wet and dry seasons). The shape of GPP-Ta curves was largely determined by daytime Ta range, MDTa, and maximum GPP with the upslope influenced by Fsd and the downslope influenced by VPD. Across all ecosystems, there was a strong positive linear relationship between Topt and MDTa (Adjusted R2 : 0.81; Slope: 1.08) with Topt exceeding MDTa by >1℃ at all but two sites. We conclude that ecosystem GPP has adjusted to local MDTa within Australian broadleaf evergreen forests and that GPP is buffered against small Ta increases in the majority of these ecosystems.


Subject(s)
Carbon Cycle , Ecosystem , Australia , Forests , Seasons , Temperature
5.
Biomolecules ; 10(4)2020 04 16.
Article in English | MEDLINE | ID: mdl-32316246

ABSTRACT

Scorpion venoms are a rich source of bioactive molecules, but characterisation of toxin peptides affecting cytosolic Ca2+, central to cell signalling and cell death, is limited. We undertook a functional screening of the venom of the Australian scorpion Hormurus waigiensis to determine the breadth of Ca2+ mobilisation. A human embryonic kidney (HEK293) cell line stably expressing the genetically encoded Ca2+ reporter GCaMP5G and the rabbit type 1 ryanodine receptor (RyR1) was developed as a biosensor. Size-exclusion Fast Protein Liquid Chromatography separated the venom into 53 fractions, constituting 12 chromatographic peaks. Liquid chromatography mass spectroscopy identified 182 distinct molecules with 3 to 63 components per peak. The molecular weights varied from 258 Da-13.6 kDa, with 53% under 1 kDa. The majority of the venom chromatographic peaks (tested as six venom pools) were found to reversibly modulate cell monolayer bioimpedance, detected using the xCELLigence platform (ACEA Biosciences). Confocal Ca2+ imaging showed 9/14 peak samples, with molecules spanning the molecular size range, increased cytosolic Ca2+ mobilization. H. waigiensis venom Ca2+ activity was correlated with changes in bio-impedance, reflecting multi-modal toxin actions on cell physiology across the venom proteome.


Subject(s)
Calcium/metabolism , Cytosol/metabolism , Electric Impedance , Scorpion Venoms/pharmacology , Caffeine/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Fluorescence , HEK293 Cells , Humans , Time Factors
6.
J Environ Manage ; 252: 109430, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31600682

ABSTRACT

In Australia, and other parts of the world, tower infrastructure in electricity transmission networks are nearing the end of their asset life. In changing economic, political and regulatory environments Transmission Network Service Providers are implementing new approaches to asset management and reinvestment, such as refurbishment to extend the life of existing assets, instead of replacement. As part of these refurbishment efforts, abrasive blasting and recoating is being employed to remove corrosion and extend the life of steel electricity transmission towers. New controls and procedures have been developed to manage the most likely impacts associated with the abrasive blasting of transmission towers. However, little or no data have been available on the environmental impacts of abrasive blasting or the effectiveness of management procedures currently being used to mitigate potential adverse environmental impacts.We conducted an integrated study on the impacts of abrasive blasting, which brought together on-site research; modelling; and controlled laboratory trials. The study was undertaken during a transmission tower refurbishment project within the World Heritage listed Wet Tropics Region in Queensland, Australia. Measured metal deposition around towers due to blasting, was primarily as large particles (>PM10) at 12-30 m from the tower. Soil concentrations of metals were highest under towers, with a small number of samples showing elevated zinc at 12-30 m. The presence of spent abrasive media and dust on the geofabric material used under the towers and up to 15 m from the tower base, as part of control measures used to contain the abrasive products, indicates that deposition also occurs between 0 and 12 m from the tower.The potential impacts of the abrasive blasting technique on plants and invertebrates appear to be low. Five species of tropical rainforest tree seedlings exposed to abrasive blasting dust at worst-case levels had no negative impact on physiological performance or plant health. This research will assist Transmission Network Service Providers and other operators of corroded linear infrastructure to plan and implement mitigating management actions and procedures during abrasive blasting projects and assist regulators and the community to better understand the impacts of the practice.


Subject(s)
Occupational Exposure , Australia , Dust , Metals , Queensland
7.
Drug Alcohol Depend ; 201: 49-57, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31181437

ABSTRACT

BACKGROUND: Impurities in commonly used illicit drugs raise concerns for unwitting consumers when pharmacologically active adulterants, especially new psychoactive substances (NPS), are used. This study examines impurities detected in illicit drugs seized in one Australian jurisdiction. METHODS: Queensland Health Forensic and Scientific Services provided analytical data. Data described the chemical composition of 9346 samples of 11 illicit drugs seized by police during 2015-2016. Impurities present in primary drugs were summarized and tabulated. A systematic search for published evidence reporting similar analyses was conducted. RESULTS: Methamphetamine was the primary drug in 6608 samples, followed by MDMA (1232 samples) and cocaine (516 samples). Purity of primary drugs ranged from ∼30% for cocaine, 2-CB and GHB to >90% for THC, methamphetamine, heroin and MDMA. Methamphetamine and MDMA contained the largest variety of impurities: 22 and 18 variants, respectively. Drug adulteration patterns were broadly similar to those found elsewhere, including NPS, but in some primary drugs impurities were found which had not been reported elsewhere. Psychostimulants were adulterated with each other. Levamisole was a common impurity in cocaine. Psychedelics were adulterated with methamphetamine and NPS. Opioids were quite pure, but some samples contained methamphetamine and synthetic opioids. CONCLUSIONS: Impurities detected were mostly pharmacologically active adulterants probably added to enhance desired effects or for active bulking. Given the designer nature of these drug cocktails, the effects of the adulterated drugs on users from possible complex multi-drug interactions is unpredictable. Awareness-raising among users, research into complex multi-drug effects and ongoing monitoring is required.


Subject(s)
Drug Contamination/statistics & numerical data , Illicit Drugs/analysis , Central Nervous System Stimulants/chemistry , Cocaine/chemistry , Hallucinogens/chemistry , Heroin/chemistry , Humans , Methamphetamine/chemistry , Police , Queensland
8.
New Phytol ; 221(3): 1409-1423, 2019 02.
Article in English | MEDLINE | ID: mdl-30242841

ABSTRACT

The ratio of leaf intercellular to ambient CO2 (χ) is modulated by stomatal conductance (gs ). These quantities link carbon (C) assimilation with transpiration, and along with photosynthetic capacities (Vcmax and Jmax ) are required to model terrestrial C uptake. We use optimization criteria based on the growth environment to generate predicted values of photosynthetic and water-use efficiency traits and test these against a unique dataset. Leaf gas-exchange parameters and carbon isotope discrimination were analysed in relation to local climate across a continental network of study sites. Sun-exposed leaves of 50 species at seven sites were measured in contrasting seasons. Values of χ predicted from growth temperature and vapour pressure deficit were closely correlated to ratios derived from C isotope (δ13 C) measurements. Correlations were stronger in the growing season. Predicted values of photosynthetic traits, including carboxylation capacity (Vcmax ), derived from δ13 C, growth temperature and solar radiation, showed meaningful agreement with inferred values derived from gas-exchange measurements. Between-site differences in water-use efficiency were, however, only weakly linked to the plant's growth environment and did not show seasonal variation. These results support the general hypothesis that many key parameters required by Earth system models are adaptive and predictable from plants' growth environments.


Subject(s)
Environment , Models, Biological , Plant Leaves/physiology , Quantitative Trait, Heritable , Carbon Isotopes , Electron Transport , Linear Models , Photosynthesis , Plant Stomata/physiology , Reproducibility of Results
9.
Toxins (Basel) ; 9(11)2017 10 27.
Article in English | MEDLINE | ID: mdl-29077051

ABSTRACT

Spider venoms constitute incredibly diverse libraries of compounds, many of which are involved in prey capture and defence. Polyamines are often prevalent in the venom and target ionotropic glutamate receptors. Here we show that a novel spider polyamine, PA366, containing a hydroxyphenyl-based structure is present in the venom of several species of tarantula, and has selective toxicity against MCF-7 breast cancer cells. By contrast, a polyamine from an Australian funnel-web spider venom, which contains an identical polyamine tail to PA366 but an indole-based head-group, is only cytotoxic at high concentrations. Our results suggest that the ring structure plays a role in the cytotoxicity and that modification to the polyamine head group might lead to more potent and selective compounds with potential as novel cancer treatments.


Subject(s)
Polyamines/chemistry , Polyamines/toxicity , Spider Venoms/chemistry , Spider Venoms/toxicity , Animals , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Magnetic Resonance Spectroscopy , Spiders
10.
Proc Biol Sci ; 284(1863)2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28931737

ABSTRACT

Animals embedded between trophic levels must simultaneously balance pressures to deter predators and acquire resources. Venomous animals may use venom toxins to mediate both pressures, and thus changes in this balance may alter the composition of venoms. Basic theory suggests that greater exposure to a predator should induce a larger proportion of defensive venom components relative to offensive venom components, while increases in arms races with prey will elicit the reverse. Alternatively, reducing the need for venom expenditure for food acquisition, for example because of an increase in scavenging, may reduce the production of offensive venom components. Here, we investigated changes in scorpion venom composition using a mesocosm experiment where we manipulated scorpions' exposure to a surrogate vertebrate predator and live and dead prey. After six weeks, scorpions exposed to surrogate predators exhibited significantly different venom chemistry compared with naive scorpions. This change included a relative increase in some compounds toxic to vertebrate cells and a relative decrease in some compounds effective against their invertebrate prey. Our findings provide, to our knowledge, the first evidence for adaptive plasticity in venom composition. These changes in venom composition may increase the stability of food webs involving venomous animals.


Subject(s)
Diet/veterinary , Predatory Behavior , Scorpion Venoms/chemistry , Scorpions , Adaptation, Physiological , Animals , Feeding Behavior , Phenotype
11.
Neuropharmacology ; 127: 46-78, 2017 Dec.
Article in English | MEDLINE | ID: mdl-27729239

ABSTRACT

This review categorizes functionally validated actions of defined scorpion toxin (SCTX) neuropeptides across ion channel subclasses, highlighting key trends in this rapidly evolving field. Scorpion envenomation is a common event in many tropical and subtropical countries, with neuropharmacological actions, particularly autonomic nervous system modulation, causing significant mortality. The primary active agents within scorpion venoms are a diverse group of small neuropeptides that elicit specific potent actions across a wide range of ion channel classes. The identification and functional characterisation of these SCTX peptides has tremendous potential for development of novel pharmaceuticals that advance knowledge of ion channels and establish lead compounds for treatment of excitable tissue disorders. This review delineates the unique specificities of 320 individual SCTX peptides that collectively act on 41 ion channel subclasses. Thus the SCTX research field has significant translational implications for pathophysiology spanning neurotransmission, neurohumoral signalling, sensori-motor systems and excitation-contraction coupling. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'


Subject(s)
Ion Channels/drug effects , Peptides/pharmacology , Scorpion Venoms/chemistry , Scorpion Venoms/pharmacology , Animals , Ion Channels/classification , Ion Channels/metabolism
12.
Biodivers Data J ; (4): e7599, 2016.
Article in English | MEDLINE | ID: mdl-27099552

ABSTRACT

BACKGROUND: Full floristic data, tree demography, and biomass estimates incorporating non-tree lifeforms are seldom collected and reported for forest plots in the tropics. Established research stations serve as important repositories of such biodiversity and ecological data. With a canopy crane setup within a tropical lowland rainforest estate, the 42-ha Daintree Rainforest Observatory (DRO) in Cape Tribulation, northern Australia is a research facility of international significance. We obtained an estimate of the vascular plant species richness for the site, by surveying all vascular plant species from various mature-phase, remnant and open vegetation patches within the site. We also integrate and report the demography and basal areas of trees ≥ 10 cm diameter at breast height (dbh) in a new 1-ha core plot, an extension to the pre-existing forest 1-ha plot under the canopy crane. In addition, we report for the canopy crane plot new demography and basal areas for smaller-size shrubs and treelets subsampled from nine 20 m(2) quadrats, and liana basal area and abundance from the whole plot. The DRO site has an estimated total vascular plant species richness of 441 species, of which 172 species (39%) are endemic to Australia, and 4 species are endemics to the Daintree region. The 2 x 1-ha plots contains a total of 262 vascular plant species of which 116 (1531 individuals) are tree species ≥ 10 cm dbh. We estimate a stem basal area of 34.9 m(2) ha(-1), of which small stems (tree saplings and shrubs <10cm dbh) and lianas collectively contribute c.4.2%. Comparing the stem density-diversity patterns of the DRO forest with other tropical rainforests globally, our meta-analysis shows that DRO forests has a comparatively high stem density and moderate species diversity, due to the influence of cyclones. These data will provide an important foundation for ecological and conservation studies in lowland tropical forest. NEW INFORMATION: We present a floristic checklist, a lifeform breakdown, and demography data from two 1-ha rainforest plots from a lowland tropical rainforest study site. We also present a meta-analysis of stem densities and species diversity from comparable-sized plots across the tropics.

13.
New Phytol ; 206(2): 614-36, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25581061

ABSTRACT

Leaf dark respiration (Rdark ) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits. Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark . Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8-28°C). By contrast, Rdark at a standard T (25°C, Rdark (25) ) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark (25) at a given photosynthetic capacity (Vcmax (25) ) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark (25) values at any given Vcmax (25) or [N] were higher in herbs than in woody plants. The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs).


Subject(s)
Carbon Cycle , Carbon Dioxide/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Plants/metabolism , Acclimatization , Cell Respiration , Climate , Models, Theoretical , Phenotype , Photosynthesis , Plant Leaves/radiation effects , Plants/radiation effects , Temperature
14.
Tree Physiol ; 34(6): 564-84, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24722001

ABSTRACT

We explored the impact of canopy position on leaf respiration (R) and associated traits in tree and shrub species growing in a lowland tropical rainforest in Far North Queensland, Australia. The range of traits quantified included: leaf R in darkness (RD) and in the light (RL; estimated using the Kok method); the temperature (T)-sensitivity of RD; light-saturated photosynthesis (Asat); leaf dry mass per unit area (LMA); and concentrations of leaf nitrogen (N), phosphorus (P), soluble sugars and starch. We found that LMA, and area-based N, P, sugars and starch concentrations were all higher in sun-exposed/upper canopy leaves, compared with their shaded/lower canopy and deep-shade/understory counterparts; similarly, area-based rates of RD, RL and Asat (at 28 °C) were all higher in the upper canopy leaves, indicating higher metabolic capacity in the upper canopy. The extent to which light inhibited R did not differ significantly between upper and lower canopy leaves, with the overall average inhibition being 32% across both canopy levels. Log-log RD-Asat relationships differed between upper and lower canopy leaves, with upper canopy leaves exhibiting higher rates of RD for a given Asat (both on an area and mass basis), as well as higher mass-based rates of RD for a given [N] and [P]. Over the 25-45 °C range, the T-sensitivity of RD was similar in upper and lower canopy leaves, with both canopy positions exhibiting Q10 values near 2.0 (i.e., doubling for every 10 °C rise in T) and Tmax values near 60 °C (i.e., T where RD reached maximal values). Thus, while rates of RD at 28 °C decreased with increasing depth in the canopy, the T-dependence of RD remained constant; these findings have important implications for vegetation-climate models that seek to predict carbon fluxes between tropical lowland rainforests and the atmosphere.


Subject(s)
Trees/physiology , Cell Respiration , Light , Phenotype , Photosynthesis , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Leaves/radiation effects , Queensland , Rainforest , Temperature , Trees/metabolism , Trees/radiation effects
15.
Ecol Appl ; 19(1): 236-53, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19323186

ABSTRACT

Leaf chemical and spectral properties of 162 canopy species were measured at 11 tropical forest sites along a 6024 mm precipitation/yr and 8.7 degrees C climate gradient in Queensland, Australia. We found that variations in foliar nitrogen, phosphorus, chlorophyll a and b, and carotenoid concentrations, as well as specific leaf area (SLA), were expressed more strongly among species within a site than along the entire climate gradient. Integrated chemical signatures consisting of all leaf properties did not aggregate well at the genus or family levels. Leaf chemical diversity was maximal in the lowland tropical forest sites with the highest temperatures and moderate precipitation levels. Cooler and wetter montane tropical forests contained species with measurably lower variation in their chemical signatures. Foliar optical properties measured from 400 to 2500 nm were also highly diverse at the species level, and were well correlated with an ensemble of leaf chemical properties and SLA (r2 = 0.54-0.83). A probabilistic diversity model amplified the leaf chemical differences among species, revealing that lowland tropical forests maintain a chemical diversity per unit richness far greater than that of higher elevation forests in Australia. Modeled patterns in spectral diversity and species richness paralleled those of chemical diversity, demonstrating a linkage between the taxonomic and remotely sensed properties of tropical forest canopies. We conclude that species are the taxonomic unit causing chemical variance in Australian tropical forest canopies, and thus ecological and remote sensing studies should consider the role that species play in defining the functional properties of these forests.


Subject(s)
Ecosystem , Plant Leaves , Trees/physiology , Tropical Climate , Australia , Conservation of Natural Resources , Environmental Monitoring , Models, Biological , Models, Statistical , Species Specificity , Spectrum Analysis
16.
J Comput Chem ; 25(4): 542-57, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14735572

ABSTRACT

Semiempirical AM1 calculations have been carried out on host-guest complexes of model hemicarcerands 1a and 2a. The justification for the choice of the AM1 Hamiltonian was based on a comparison between reported X-ray data for the smaller tetrabromocavitand 4a and computational results obtained using several different Hamiltonians. The complexation behavior of hemicarcerands 1a and 2a have been compared with experimental results reported by Cram et al. for the related hemicarcerands 1b and 2b. Based on this comparison, a criterion for predicting guest encapsulation was developed, E(complexation), which relies on the calculation of AM1 heats of formation for host, guest, and hemicarceplex. If E(complexation) is lower than 10 kcal/mol, then a guest will be encapsulated, while if it is greater than 30 kcal/mol, a guest will not be encapsulated. The use of constrained-path AM1 optimizations to determine the energy barriers to guest entry and exit from the host was found to be a useful tool for examining suitable host-guest combinations when the E(complexation) criteria does not hold. We have computed the barriers to exit of N, N-dimethylformamide (dmf) and furan from the hemicarcerand 1a, the former has been compared with the experiment and shows excellent agreement. Based on the success of the above computational methods in predicting which host-guest combinations will form stable hemicarceplexes we have synthesized a new target hemicarceplex 1b.furan.

SELECTION OF CITATIONS
SEARCH DETAIL
...