Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Cell Rep ; 42(8): 112763, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37478012

ABSTRACT

Kynurenine monooxygenase (KMO) blockade protects against multiple organ failure caused by acute pancreatitis (AP), but the link between KMO and systemic inflammation has eluded discovery until now. Here, we show that the KMO product 3-hydroxykynurenine primes innate immune signaling to exacerbate systemic inflammation during experimental AP. We find a tissue-specific role for KMO, where mice lacking Kmo solely in hepatocytes have elevated plasma 3-hydroxykynurenine levels that prime inflammatory gene transcription. 3-Hydroxykynurenine synergizes with interleukin-1ß to cause cellular apoptosis. Critically, mice with elevated 3-hydroxykynurenine succumb fatally earlier and more readily to experimental AP. Therapeutically, blockade with the highly selective KMO inhibitor GSK898 rescues the phenotype, reducing 3-hydroxykynurenine and protecting against critical illness and death. Together, our findings establish KMO and 3-hydroxykynurenine as regulators of inflammation and the innate immune response to sterile inflammation. During critical illness, excess morbidity and death from multiple organ failure can be rescued by systemic KMO blockade.


Subject(s)
Kynurenine , Pancreatitis , Mice , Animals , Critical Illness , Multiple Organ Failure , Acute Disease , Mice, Knockout , Inflammation , Kynurenine 3-Monooxygenase/genetics
2.
J Invest Dermatol ; 141(9): 2272-2279, 2021 09.
Article in English | MEDLINE | ID: mdl-33744298

ABSTRACT

Regulation of proteolytic activity in the skin plays a pivotal role in epidermal homeostasis. This is best exemplified in Netherton syndrome, a severe genetic skin condition caused by loss-of-function mutations in the gene serine protease inhibitor Kazal-type 5 encoding lympho-epithelial Kazal-type-related inhibitor, a serine protease inhibitor that regulates kallikrein (KLK)-related peptidase 5, 7, and 14 activities. KLK5 plays a central role in stratum corneum shedding and inflammatory cell signaling, activates KLK7 and KLK14, and is therefore an optimal therapeutic target. We aimed to identify a potent and selective small-molecule inhibitor of KLK5 amenable to epidermal delivery. GSK951 was identified using a structure-based design strategy and showed a half maximal inhibitory concentration of 250 pM for KLK5 and greater than 100-fold selectivity over KLK7 and KLK14. Cocrystal structure analysis identified the critical catalytic site interactions to a surrogate for KLK5. Topical application of GSK951-containing cream inhibited KLK5 activity in TgKLK5 mouse skin, reduced transepidermal water loss, and decreased proinflammatory cytokine expression. GSK951 achieved high concentrations in healthy human epidermis following topical application in a cream formulation. Finally, KLK5 protease activity was increased in stratum corneum of patients with Netherton syndrome and significantly inhibited by GSK951. These findings unveil a KLK5-specific small-molecule inhibitor with a high therapeutic potential for patients with Netherton syndrome.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Boron Compounds/therapeutic use , Inflammation/drug therapy , Kallikreins/antagonists & inhibitors , Netherton Syndrome/drug therapy , Skin/pathology , Administration, Topical , Animals , Disease Models, Animal , Humans , Kallikreins/genetics , Mice , Mice, Transgenic , Signal Transduction , Skin/drug effects , Skin Cream
3.
Bioorg Med Chem Lett ; 41: 127973, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33753261

ABSTRACT

α1-antitrypsin deficiency is characterised by the misfolding and intracellular polymerisation of mutant α1-antitrypsin protein within the endoplasmic reticulum (ER) of hepatocytes. Small molecules that bind and stabilise Z α1-antitrypsin were identified via a DNA-encoded library screen. A subsequent structure based optimisation led to a series of highly potent, selective and cellular active α1-antitrypsin correctors.


Subject(s)
Drug Design , Protein Folding , alpha 1-Antitrypsin/metabolism , Crystallization , Drug Development/methods , Drug Evaluation, Preclinical , Endoplasmic Reticulum/metabolism , Gene Library , Hepatocytes/metabolism , Humans , Models, Molecular , Protein Conformation , alpha 1-Antitrypsin/genetics
4.
EMBO Mol Med ; 13(3): e13167, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33512066

ABSTRACT

Severe α1 -antitrypsin deficiency results from the Z allele (Glu342Lys) that causes the accumulation of homopolymers of mutant α1 -antitrypsin within the endoplasmic reticulum of hepatocytes in association with liver disease. We have used a DNA-encoded chemical library to undertake a high-throughput screen to identify small molecules that bind to, and stabilise Z α1 -antitrypsin. The lead compound blocks Z α1 -antitrypsin polymerisation in vitro, reduces intracellular polymerisation and increases the secretion of Z α1 -antitrypsin threefold in an iPSC model of disease. Crystallographic and biophysical analyses demonstrate that GSK716 and related molecules bind to a cryptic binding pocket, negate the local effects of the Z mutation and stabilise the bound state against progression along the polymerisation pathway. Oral dosing of transgenic mice at 100 mg/kg three times a day for 20 days increased the secretion of Z α1 -antitrypsin into the plasma by sevenfold. There was no observable clearance of hepatic inclusions with respect to controls over the same time period. This study provides proof of principle that "mutation ameliorating" small molecules can block the aberrant polymerisation that underlies Z α1 -antitrypsin deficiency.


Subject(s)
alpha 1-Antitrypsin Deficiency , alpha 1-Antitrypsin , Animals , Endoplasmic Reticulum , Hepatocytes , Mice , alpha 1-Antitrypsin/genetics
5.
J Cell Sci ; 133(9)2020 05 14.
Article in English | MEDLINE | ID: mdl-32198280

ABSTRACT

Endothelial barrier dysfunction leads to edema and vascular leak, causing high morbidity and mortality. Previously, Abl kinase inhibition has been shown to protect against vascular leak. Using the distinct inhibitory profiles of clinically available Abl kinase inhibitors, we aimed to provide a mechanistic basis for novel treatment strategies against vascular leakage syndromes. We found that the inhibitor bosutinib most potently protected against inflammation-induced endothelial barrier disruption. In vivo, bosutinib prevented lipopolysaccharide (LPS)-induced alveolar protein extravasation in an acute lung injury mice model. Mechanistically, mitogen-activated protein 4 kinase 4 (MAP4K4) was identified as important novel mediator of endothelial permeability, which signaled via ezrin, radixin and moesin proteins to increase turnover of integrin-based focal adhesions. The combined inhibition of MAP4K4 and Abl-related gene (Arg, also known as ABL2) by bosutinib preserved adherens junction integrity and reduced turnover of focal adhesions, which synergistically act to stabilize the endothelial barrier during inflammation. We conclude that MAP4K4 is an important regulator of endothelial barrier integrity, increasing focal adhesion turnover and disruption of cell-cell junctions during inflammation. Because it inhibits both Arg and MAP4K4, use of the clinically available drug bosutinib might form a viable strategy against vascular leakage syndromes.


Subject(s)
Focal Adhesions , Pharmaceutical Preparations , Adherens Junctions , Aniline Compounds , Animals , Capillary Permeability , Mice , Nitriles , Quinolines
6.
J Med Chem ; 63(6): 3348-3358, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32109056

ABSTRACT

ER aminopeptidase 1 (ERAP1) is an intracellular enzyme that generates antigenic peptides and is an emerging target for cancer immunotherapy and the control of autoimmunity. ERAP1 inhibitors described previously target the active site and are limited in selectivity, minimizing their clinical potential. To address this, we targeted the regulatory site of ERAP1 using a high-throughput screen and discovered a small molecule hit that is highly selective for ERAP1. (4aR,5S,6R,8S,8aR)-5-(2-(Furan-3-yl)ethyl)-8-hydroxy-5,6,8a-trimethyl-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylic acid is a natural product found in Dodonaea viscosa that constitutes a submicromolar, highly selective, and cell-active modulator of ERAP1. Although the compound activates hydrolysis of small model substrates, it is a competitive inhibitor for physiologically relevant longer peptides. Crystallographic analysis confirmed that the compound targets the regulatory site of the enzyme that normally binds the C-terminus of the peptide substrate. Our findings constitute a novel starting point for the development of selective ERAP1 modulators that have potential for further clinical development.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Antigen Presentation/drug effects , Diterpenes, Clerodane/pharmacology , Epitopes/metabolism , Peptides/metabolism , Protease Inhibitors/pharmacology , Allosteric Site , Aminopeptidases/chemistry , Aminopeptidases/metabolism , Animals , Catalytic Domain , Crystallography, X-Ray , Diterpenes, Clerodane/chemistry , Diterpenes, Clerodane/metabolism , Enzyme Activators/chemistry , Enzyme Activators/metabolism , Enzyme Activators/pharmacology , Epitopes/chemistry , HeLa Cells , Humans , Mice , Minor Histocompatibility Antigens/chemistry , Minor Histocompatibility Antigens/metabolism , Peptides/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protein Binding , Proteolysis/drug effects
8.
Proc Natl Acad Sci U S A ; 116(52): 26709-26716, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31843903

ABSTRACT

Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an intracellular enzyme that optimizes the peptide cargo of major histocompatibility class I (MHC-I) molecules and regulates adaptive immunity. It has unusual substrate selectivity for length and sequence, resulting in poorly understood effects on the cellular immunopeptidome. To understand substrate selection by ERAP1, we solved 2 crystal structures of the enzyme with bound transition-state pseudopeptide analogs at 1.68 Å and 1.72 Å. Both peptides have their N terminus bound at the active site and extend away along a large internal cavity, interacting with shallow pockets that can influence selectivity. The longer peptide is disordered through the central region of the cavity and has its C terminus bound in an allosteric pocket of domain IV that features a carboxypeptidase-like structural motif. These structures, along with enzymatic and computational analyses, explain how ERAP1 can select peptides based on length while retaining the broad sequence-specificity necessary for its biological function.

9.
Bioorg Med Chem Lett ; 29(20): 126675, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31521475

ABSTRACT

The connection between Netherton syndrome and overactivation of epidermal/dermal proteases, particularly Kallikrein 5 (KLK5) has been well established and it is expected that a KLK5 inhibitor would improve the dermal barrier and also reduce the pain and itch that afflict Netherton syndrome patients. One of the challenges of covalent protease inhibitors has been achieving selectivity over closely related targets. In this paper we describe the use of structural insight to design and develop a selective and highly potent reversibly covalent KLK5 inhibitor from an initial weakly binding fragment.


Subject(s)
Benzamidines/chemistry , Kallikreins/antagonists & inhibitors , Netherton Syndrome/drug therapy , Serine Proteinase Inhibitors/chemistry , Amino Acid Sequence , Benzamidines/pharmacology , Binding Sites , Drug Evaluation, Preclinical , Humans , Isomerism , Models, Molecular , Molecular Structure , Mutation , Protein Binding , Serine Peptidase Inhibitor Kazal-Type 5/genetics , Serine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship
10.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 5): 385-391, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31045568

ABSTRACT

The inhibition of kallikrein 5 (KLK5) has been identified as a potential strategy for treatment of the genetic skin disorder Netherton syndrome, in which loss-of-function mutations in the SPINK5 gene lead to down-regulation of the endogenous inhibitor LEKTI-1 and profound skin-barrier defects with severe allergic manifestations. To aid in the development of a medicine for this target, an X-ray crystallographic system was developed to facilitate fragment-guided chemistry and knowledge-based drug-discovery approaches. Here, the development of a surrogate crystallographic system in place of KLK5, which proved to be challenging to crystallize, is described. The biochemical robustness of the crystallographic surrogate and the suitability of the system for the study of small nonpeptidic fragments and lead-like molecules are demonstrated.


Subject(s)
Benzamidines/chemistry , Kallikreins/chemistry , Protease Inhibitors/chemistry , Amino Acid Sequence , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Benzamidines/pharmacology , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Drug Discovery , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kallikreins/antagonists & inhibitors , Kallikreins/genetics , Kallikreins/metabolism , Kinetics , Models, Molecular , Mutation , Netherton Syndrome/drug therapy , Netherton Syndrome/enzymology , Protease Inhibitors/pharmacology , Protein Binding , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sf9 Cells , Spodoptera , Static Electricity , Substrate Specificity
11.
Bioorg Med Chem Lett ; 29(12): 1454-1458, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31005442

ABSTRACT

The connection between Netherton syndrome and overactivation of epidermal/dermal proteases particularly KLK5 has been well established. To treat sufferers of this severe condition we wished to develop a topical KLK5 inhibitor in order to normalise epidermal shedding and reduce the associated inflammation and itching. In this paper we describe structure-based optimisation of a series of brightly coloured weak KLK5 inhibitors into colourless, non-irritant molecules with good KLK5 activity and selectivity over a range of serine proteases.


Subject(s)
Drug Design , Kallikreins/antagonists & inhibitors , Netherton Syndrome/drug therapy , Humans
12.
Bioorg Med Chem Lett ; 29(6): 821-825, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30691925

ABSTRACT

Netherton syndrome (NS) is a rare and debilitating severe autosomal recessive genetic skin disease with high mortality rates particularly in neonates. NS is caused by loss-of-function SPINK5 mutations leading to unregulated kallikrein 5 (KLK5) and kallikrein 7 (KLK7) activity. Furthermore, KLK5 inhibition has been proposed as a potential therapeutic treatment for NS. Identification of potent and selective KLK5 inhibitors would enable further exploration of the disease biology and could ultimately lead to a treatment for NS. This publication describes how fragmentation of known trypsin-like serine protease (TLSP) inhibitors resulted in the identification of a series of phenolic amidine-based KLK5 inhibitors 1. X-ray crystallography was used to find alternatives to the phenol interaction leading to identification of carbonyl analogues such as lactam 13 and benzimidazole 15. These reversible inhibitors, with selectivity over KLK1 (10-100 fold), provided novel starting points for the guided growth towards suitable tool molecules for the exploration of KLK5 biology.


Subject(s)
Benzamidines/chemistry , Kallikreins/antagonists & inhibitors , Serine Proteinase Inhibitors/chemistry , Animals , Benzamidines/chemical synthesis , Benzamidines/metabolism , Catalytic Domain , Drug Design , Kallikreins/metabolism , Netherton Syndrome/drug therapy , Protein Binding , Salicylamides/chemical synthesis , Salicylamides/chemistry , Salicylamides/metabolism , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/metabolism , Spodoptera/genetics
13.
Bioorg Med Chem Lett ; 28(21): 3458-3462, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30249354

ABSTRACT

The discovery and lead optimisation of a novel series of SYK inhibitors is described. These were optimised for SYK potency and selectivity against Aurora B. Compounds were profiled in a human skin penetration study to identify a suitable candidate molecule for pre-clinical development. Compound 44 (GSK2646264) was selected for progression and is currently in Phase I clinical trials.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Skin/drug effects , Syk Kinase/antagonists & inhibitors , Administration, Topical , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Catalytic Domain , Cell Line, Tumor , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/administration & dosage , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , Syk Kinase/chemistry
14.
Nat Commun ; 8: 15827, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28604669

ABSTRACT

Kynurenine-3-monooxygenase (KMO) is a key FAD-dependent enzyme of tryptophan metabolism. In animal models, KMO inhibition has shown benefit in neurodegenerative diseases such as Huntington's and Alzheimer's. Most recently it has been identified as a target for acute pancreatitis multiple organ dysfunction syndrome (AP-MODS); a devastating inflammatory condition with a mortality rate in excess of 20%. Here we report and dissect the molecular mechanism of action of three classes of KMO inhibitors with differentiated binding modes and kinetics. Two novel inhibitor classes trap the catalytic flavin in a previously unobserved tilting conformation. This correlates with picomolar affinities, increased residence times and an absence of the peroxide production seen with previous substrate site inhibitors. These structural and mechanistic insights culminated in GSK065(C1) and GSK366(C2), molecules suitable for preclinical evaluation. Moreover, revising the repertoire of flavin dynamics in this enzyme class offers exciting new opportunities for inhibitor design.


Subject(s)
Enzyme Inhibitors/pharmacology , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Multiple Organ Failure/metabolism , Pancreatitis/metabolism , Animals , Enzyme Inhibitors/chemistry , Escherichia coli/genetics , Humans , Hydrogen Peroxide/metabolism , Kynurenine 3-Monooxygenase/chemistry , Kynurenine 3-Monooxygenase/metabolism , Models, Molecular , Protein Domains , Sf9 Cells
15.
J Med Chem ; 60(8): 3383-3404, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28398044

ABSTRACT

Recently, we reported a novel role for KMO in the pathogenesis of acute pancreatitis (AP). A number of inhibitors of kynurenine 3-monooxygenase (KMO) have previously been described as potential treatments for neurodegenerative conditions and particularly for Huntington's disease. However, the inhibitors reported to date have insufficient aqueous solubility relative to their cellular potency to be compatible with the intravenous (iv) dosing route required in AP. We have identified and optimized a novel series of high affinity KMO inhibitors with favorable physicochemical properties. The leading example is exquisitely selective, has low clearance in two species, prevents lung and kidney damage in a rat model of acute pancreatitis, and is progressing into preclinical development.


Subject(s)
Enzyme Inhibitors/pharmacology , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Pancreatitis/drug therapy , Acute Disease , Animals , Enzyme Inhibitors/therapeutic use , Humans , Rats
16.
Angew Chem Int Ed Engl ; 56(19): 5322-5326, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28378388

ABSTRACT

We report a multi-component asymmetric Brønsted acid-catalyzed aza-Darzens reaction which is not limited to specific aromatic or heterocyclic aldehydes. Incorporating alkyl diazoacetates and, important for high ee's, ortho-tert-butoxyaniline our optimized reaction (i.e. solvent, temperature and catalyst study) affords excellent yields (61-98 %) and mostly >90 % optically active cis-aziridines. (+)-Chloramphenicol was generated in 4 steps from commercial starting materials. A tentative mechanism is outlined.

18.
Sci Rep ; 6: 33951, 2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27669975

ABSTRACT

Inhibition of kynurenine 3-monooxygenase (KMO) protects against multiple organ dysfunction (MODS) in experimental acute pancreatitis (AP). We aimed to precisely define the kynurenine pathway activation in relation to AP and AP-MODS in humans, by carrying out a prospective observational study of all persons presenting with a potential diagnosis of AP for 90 days. We sampled peripheral venous blood at 0, 3, 6, 12, 24, 48, 72 and 168 hours post-recruitment. We measured tryptophan metabolite concentrations and analysed these in the context of clinical data and disease severity indices, cytokine profiles and C-reactive protein (CRP) concentrations. 79 individuals were recruited (median age: 59.6 years; 47 males, 59.5%). 57 met the revised Atlanta definition of AP: 25 had mild, 23 moderate, and 9 severe AP. Plasma 3-hydroxykynurenine concentrations correlated with contemporaneous APACHE II scores (R2 = 0.273; Spearman rho = 0.581; P < 0.001) and CRP (R2 = 0.132; Spearman rho = 0.455, P < 0.001). Temporal profiling showed early tryptophan depletion and contemporaneous 3-hydroxykynurenine elevation. Furthermore, plasma concentrations of 3-hydroxykynurenine paralleled systemic inflammation and AP severity. These findings support the rationale for investigating early intervention with a KMO inhibitor, with the aim of reducing the incidence and severity of AP-associated organ dysfunction.

19.
Bioorg Med Chem Lett ; 26(19): 4606-4612, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27578246

ABSTRACT

The optimisation of the azanaphthyridine series of Spleen Tyrosine Kinase inhibitors is described. The medicinal chemistry strategy was focused on optimising the human whole blood activity whilst achieving a sufficient margin over hERG activity. A good pharmacokinetic profile was achieved by modification of the pKa. Morpholine compound 32 is a potent SYK inhibitor showing moderate selectivity, good oral bioavailability and good efficacy in the rat Arthus model but demonstrated a genotoxic potential in the Ames assay.


Subject(s)
Naphthyridines/pharmacology , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Biological Availability , Crystallography, X-Ray , Humans , Mutagenicity Tests , Naphthyridines/administration & dosage , Naphthyridines/pharmacokinetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Rats , Structure-Activity Relationship
20.
Nat Med ; 22(2): 202-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26752518

ABSTRACT

Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death. Acute mortality from AP-MODS exceeds 20% (ref. 3), and the lifespans of those who survive the initial episode are typically shorter than those of the general population. There are no specific therapies available to protect individuals from AP-MODS. Here we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism, is central to the pathogenesis of AP-MODS. We created a mouse strain that is deficient for Kmo (encoding KMO) and that has a robust biochemical phenotype that protects against extrapancreatic tissue injury to the lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of the oxazolidinone GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in the levels of kynurenine pathway metabolites in vivo, and it afforded therapeutic protection against MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS, and they open up a new area for drug discovery in critical illness.


Subject(s)
Benzoxazoles/pharmacology , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Multiple Organ Failure/genetics , Oxazolidinones/pharmacology , Pancreatitis/genetics , Propionates/pharmacology , RNA, Messenger/metabolism , Acute Disease , Animals , Chromatography, Liquid , Crystallography, X-Ray , Disease Models, Animal , HEK293 Cells , Hepatocytes/metabolism , Humans , In Vitro Techniques , Kidney/metabolism , Kidney/pathology , Kynurenine 3-Monooxygenase/genetics , Lung/metabolism , Lung/pathology , Mice , Mice, Knockout , Multiple Organ Failure/etiology , Multiple Organ Failure/pathology , Pancreas/metabolism , Pancreas/pathology , Pancreatitis/complications , Pancreatitis/pathology , Rats , Tandem Mass Spectrometry , Tryptophan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...